
An Axiomatic Approach to Routing

Omer Lev
Hebrew University and

Microsoft Research, Israel
omerl@cs.huji.ac.il

Moshe Tennenholtz
Technion

moshet@ie.technion.ac.il

Aviv Zohar
Hebrew University and

Microsoft Research, Israel
avivz@cs.huji.ac.il

ABSTRACT
Information delivery in a network of agents is a key issue for
large, complex systems that need to do so in a predictable,
efficient manner. The delivery of information in such multi-
agent systems is typically implemented through routing pro-
tocols that determine how information flows through the
network. Different routing protocols exist each with its own
benefits, but it is generally unclear which properties can
be successfully combined within a given algorithm. We ap-
proach this problem from the axiomatic point of view, i.e.,
we try to establish what are the properties we would seek
to see in such a system, and examine the different proper-
ties which uniquely define common routing algorithms used
today.

We examine several desirable properties, such as robust-
ness, which ensures adding nodes and edges does not change
the routing in a radical, unpredictable ways; and proper-
ties that depend on the operating environment, such as an
“economic model”, where nodes choose their paths based on
the cost they are charged to pass information to the next
node. We proceed to fully characterize minimal spanning
tree, shortest path, and weakest link routing algorithms,
showing a tight set of axioms for each.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign; C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network Protocols; C.2.6 [Computer
Systems Organization]: Computer-Communication Net-
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1. INTRODUCTION
The proper way to distribute power, disseminate infor-

mation, or establish hierarchies in organizations is an issue
encountered whenever there is a large enough network of
agents that needs to interact in an orderly manner. For ex-
ample, when trying to establish efficient lines of communica-
tions between agents which all need to reach a central hub,
there are various properties we may desire in our system. We
might want the system to be able to handle small changes
in connections without causing disruptions throughout the
network; we may want it to be flexible when we change its
parameters so that various routing options are possible, and
more. Indeed, the search for the right communication struc-
ture has played a role in early work on the foundations of
the area of multi-agent systems [7, 15, 5], based on classical
work in organization theory [8, 16].

More concretely, examining networking, one of the most
important aspects of the design of a communication net-
work is the way it routes information through its physi-
cal links. Routing protocols, such as those used in packet
switching networks, circuit switching, or ad-hoc networks
are designed with many goals in mind. They must adapt
to changing network conditions, withstand failures, and op-
erate in a distributed fashion while constructing a “good”
routing scheme. Nodes in the network are, in fact, au-
tonomous agents that can control the flow of information
through them and can choose to forward it according to
their own considerations. Agents may be controlled by dif-
ferent economic entities (such as in the internet, where differ-
ent internet service providers control some of the routers),
and may route according to complex preferences that are
derived from economic relations [9, 14]. Even in the cooper-
ative local-network setting where all routers are controlled
by a single network operator, different considerations such as
bandwidth utilization, latency, and the risks of link failures
come into play.

The multitude of previous treatments of the problem sug-
gest a myriad of routing protocols, each with their own ben-
efits and shortcomings. In contrast, this work examines the
routing problem through the lens of the axiomatic approach,
which seeks to formulate different elementary properties that
are desirable in this context. One approach to an axiomatic
treatment, which we take in this work, is that of character-
ization: a set of elementary properties is shown to uniquely
determine some routing algorithm, and hence the routing



outcome on any specific graph. From the designer’s per-
spective, such a result implies a great deal – any additional
property that is not already achieved by the protocol cannot
be added to it without giving up on another basic property.
The approach thus provably bounds the design space of algo-
rithms and makes explicit the choices made when selecting
one over the other.

As we are not aware of any previous axiomatic treatment
of routing, we focus our attention on a domain that most
closely resembles the internet as it is built today, and fo-
cus our efforts within this domain on what one may con-
sider classic, or natural routing schemes. In particular, we
assume that routing choices are independent of the conges-
tion on links (such is the case in the internet, where routing
protocols such as BGP first establish paths, and congestion
control protocols such as the one embedded into TCP man-
age the load on each flow’s path and ensures that rates are
throttled to match the bottleneck of the flow). Further-
more, as with internet routing where routers decide on the
next hop of each packet using a routing table that maps its
destination to the next hop, routing choices made to dif-
ferent destinations are done independently. Finally, packets
addressed to the same destination are not split between dif-
ferent paths, and are routed in the same manner regardless
of their source. These choices, which greatly restrict the
power of any routing algorithm may seem arbitrary, but are
in fact derived from real-world design considerations. For
example, the need to quickly forward packets towards their
destination at each router mandated that most routing be
done in specialized hardware. No complex computation is
performed (only a lookup into a routing table) and no deep
inspection of the packet is performed. Keeping routing sim-
ple has made it fast and robust.

More advanced routing schemes that have been proposed
in the literature may split traffic, allow routing choices to
depend on the source of the packet or its previous hops, or
may even change the routes in response to link congestion.
These are notoriously difficult to coordinate and to imple-
ment. We leave treatment of these more advanced schemes
to future work.

Our set of axioms or “desirable properties” are also moti-
vated by similar considerations. For example, one of the fun-
damental features we desire in our algorithms is one of ro-
bustness, which is the ability of a system to endure changes
in the network without creating disruption in parts of the
network that have not undergone changes.

A different feature, which might be desirable only in cer-
tain cases, is “first hop”, which is particularly relevant for
diffuse networks with independent nodes. It means, broadly,
that network nodes care only about their immediate sur-
roundings, or the “next step” in the network data transfer.
Such a property might be relevant when nodes pursue an
“economic model”, paying for transferring information, and
hence only caring about the cost they need to pay to move
their information to the next node, and following that, they
have no preference on the route the information should pass
en route to its destination. Other properties, desirable only
in some cases include an indifference between two parallel
paths, as long as they change their weights by the same
amount concurrently.

Ultimately, after devising our axioms we successfully fully
characterized 3 natural routing algorithms:

• Minimum spanning tree: A tree with the smallest

overall weight is a result, among others, of the “first
hop” axiom (the “economic model”).

• Shortest path: A tree where each node has the short-
est possible path to its destination is a result, among
other axioms, of viewing as immaterial to the routing
decision any parallel paths which change their weight
by the same amount.

• Weakest link tree: A tree where each node takes the
path with the maximal “lightest” weight available to
it. This results from considering higher edge-weights
as beneficial (e.g., representing bandwidth which one
wishes to increase in contrast to delay that one wishes
to decrease), and from considering designers that choose
between parallel paths in a slightly different manner.

We proceed to review relevant previous research and then
continue to define our model and expand on the axioms,
which are motivated with a brief explanation and presented
formally. Following that we show (and prove) our character-
ization of the minimal spanning tree, the shortest path tree,
and the weakest link tree.

2. RELATED WORK
In the past decade, as routers became more flexible, re-

search on routing (particularly inter-domain) and its tech-
niques has been rekindled and extended beyond the techni-
cal issues dealt with in the past. The harbinger for much of
this research was [10], which was further expanded by sev-
eral researchers (see updating report here: http://www.cl.

cam.ac.uk/~tgg22/metarouting/ ). However, this line of
research, while introducing many interesting mathematical
and theoretical concepts to the field of routing, has refrained
from phrasing its models as requirements by users, to be
filled by various routing algorithms.

The axiomatic approach, which does approach problems
with this outlook, has been first introduced in CS contexts
as extensions to the classical theory of choice [4], and has
been applied to ranking systems [1, 2] and trust systems [3],
as well as to other multi-agent setups such as multi-level
marketing [6].

In relation to networking, usage of the axiomatic approach
has generally been concentrated in two main areas: apply-
ing to general graph theory (e.g., [18]) or in more technical
approaches to networks: papers such as [13] which deal with
particular wireless models and implementations, and, some-
what closer to our line of work, [12], whose basic axioms are
basic enough to be covered through our models, while the
routing related axioms involve various assumptions on how
routers work (tables, etc.), which we refrain from approach-
ing in our more abstract considerations.

Further work connecting networking and the axiomatic
approach has focused on particular instances of problems:
[11] try to use the axiomatic approach to extract the costs
of multicast routing and decide who is to pay them. Trust
networks and social networks (e.g., recommendation sys-
tems) have been analysed many times using the axiomatic
approach to understand their desirable features and better
understand desirable algorithms in these cases [17, 3]. How-
ever, none of these papers deal with the basic routing mech-
anism by which messages and information arrive at each
node.



3. SETUP
Before introducing our axioms, we begin by setting up

our routing model. It is, naturally, only a simplification of
routing as it is done in large, complex networks such as the
internet, but we believe it is robust enough to display many
networking characteristics.

Our world will be a weighted graph G(V,E,W ) and a
destination d, where V is a set of nodes, E is a set of edges,
and W is a function assigning weights to edges, and d ∈ V .
A routing solution is a tree T over that graph, as defined
below (we do not concern ourselves with non-tree routing,
as passing through the same node several times does not
serve any purpose).

Definition 1. A routing function fd : G → T is a func-
tion from connected weighted graph G(V,E,W ) ∈ G in which
d ∈ V , to a tree T (V,E,W ) ∈ T such that T ⊆ G.

We can look at the graph as one with directed edges if
we consider each edge’s direction to be the one pointing at
the vertex from which there is a path to d (without going
through the same edge again).

We discuss 3 different routing options:

• Minumum spanning tree (MST): a tree connecting all
nodes in the graph with the minimal weight, i.e., for
every tree T ′ ⊆ G that encompasses all of G’s nodes,∑

e∈fd(G)W (e) ≤
∑

e∈T ′ W (e).

• Shortest path: each node is connected to d using a
shortest length path in the graph. For every node v ∈
V , let (e1, . . . , es) be a path without cycles from v to d
such that ei ∈ T , and let (e′1, . . . , e

′
k) a different path

from v to d, then
∑s

i=1W (ei) ≤
∑k

j=1W (e′j).

• Weakest link : looking at each potential path from each
node to d, we give each path the value of its smallest
valued edge. The routing tree will contain, for each
node the path to d with the maximal value. So for
every node v ∈ V , let (e1, . . . , es) be a path without
cycles from v to d such that ei ∈ T , and let (e′1, . . . , e

′
k)

a different path from v to d, then min1≤i≤sW (ei) ≥
min1≤j≤kW (e′j).

Notice that while for the minimal spanning tree and short-
est path routing options weights are interpreted as costs
(e.g. payments, delays), so these algorithms seek to mini-
mize them, the weakest link views weights as measure for ca-
pability such as bandwidth, so seeks to maximize the weight.

4. AXIOMS
Having introduced our framework, we introduce our ax-

ioms, which are, basically, desirable properties of the func-
tion fd (in the axioms below we use f , as these are properties
which do not depend on a specific d destination).

Robustness indicates the routing being quite unsusceptible
to changes – only if a path in the routing is destroyed, will
it require any change. As indicated in Figure 1, the path
from node a changes, but not from node b.

Axiom 1 (Robustness). f is robust if removing an
edge e ∈ E from G(V,E,W ), yielding G′, then for every
vertex v ∈ V : if the cycle-less path from v to d in fd(G) did
not contain e, then this is still the selected path according to
fd(G′) (see example Figure 1).

a 

a a 

a b b 

b b 

d d 

d d 

Figure 1: An edge is removed, but only a, whose
path used that edge changes its path (the left side is
the graph, the right side is the routing algorithm’s
output)

The following axioms deal with global changes to the graph
weights, additive or multiplicative:

Axiom 2 (Scale Invariance). f is scale invariant if
for a graph G(V,E,W ), for any positive scalar α ∈ R+,
defining G′(V,E, αW ), for every d ∈ V , fd(G) = fd(G′).

Axiom 3 (Shift Invariance). f is shift-invariant if for
a graph G(V,E,W ), for any α ∈ R, defining G′(V,E, α +
W ), for every d ∈ V , fd(G) = fd(G′).

The monotonicity axiom below seeks to establish that if an
edge does not have to be in every tree, if its weight increases
enough, it will not be a part of the routing tree:

Axiom 4 (Monotonicity). f is monotone if for a graph
G(V,E,W ) and d ∈ V , for e′ ∈ E, if e′ /∈ fd(G), then
for every G′(V,E,W ′), there is a value MW ′ such that for
W ′′ such that W ′′(e) = W ′(e) for all e ∈ E \ {e′} and
W ′′(e′) ≥ MW ′ , e′ /∈ fd(G′′(V,E,W ′′)). Similarly, we can
define the opposite direction, an edge in fd(G) will not be in
the routing tree if it has a small enough value; we will refer
to it as inverse monotonicity.

While the phrasing of the following axiom is somewhat tech-
nical, the first hop axiom below simply means that if a ver-
tex has several potential edges to connect to a path to d, the
routing only depends on the weights of the edges connecting
it to these potential paths, and unrelated to weights of other
edges in the graph.

Axiom 5 (First Hop). Let G(V,E,W ) be a weighted
graph and let v, d ∈ V and d 6= v. Suppose C = {c1, . . . , cs}
are the vertices such that (v, ci) ∈ E and there is a path from
ci to d in fd(G) which does not pass through v. W.l.o.g., let
(v, c1) be the first step in the path from v to d in fd(G).
We say that f satisfies first hop if for any W ′ such that
W ′(v, ci) = W (v, ci) and if for all ci ∈ C fd(G′(V,E,W ′))
contains paths to d from ci that do not pass through v, and
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Figure 2: Selected path does not change when each
path from the top node is added 2.

there is no c′ /∈ C such that (v, c′) ∈ E and there is a path
from c′ to d in fd(G′), then the cycle-less path from v to d
in fd(G′(V,E,W ′)) starts with (v, c1).

The rational for the first hop axiom is to capture a com-
mon economic model, in which edge weights indicate the
cost of passing information. In distributed networks, such
as the internet, each agent only minds the amount it needs
to pay to transfer its data to the next node, not caring about
the path the data will take from there.

Path cardinal/ordinal invariance intends to see the plan-
ner’s considerations when multiple paths exist. As there
might be many potential behaviours, we only limit ourselves
to examining the narrow case of what the planner considers
important when there is only one cycle in the graph (i.e., the
axiom does not strongly enforce a general behaviour on the
planner). Cardinal invariance deals with adding the same
weight to potential paths, and how it does not effect the
routing. Ordinal invariance similarly does not change the
routing if all that has changed are the weights of the com-
peting paths, as long as edges in each path maintain their
relative position.

Axiom 6 (Path Cardinal Invariance). Let G(V,E,W )
be a graph which contains a single cycle, d ∈ V , and let
d 6= v ∈ V be a part of this cycle. Hence there are two
alternative paths from v to d – p1 ⊂ E and p2 ⊂ E (one
of them is actually a part of fd(G)). f is path cardinal in-
variant if it treats those paths as such: Choosing an edge
e′ ∈ p1 and e′′ ∈ p2, for any α ∈ R, we define W ′ as
W (e) = W ′(e) for e ∈ E \{e′ ∪ e′′} and W ′(e′) = W (e′) +α
and W ′(e′′) = W (e′′) + α, the path from v to d will not
change in fd(G(V,E,W ′)) (see example Figure 2).

Axiom 7 (Path Ordinal Invariance). Let G(V,E,W )
be a graph which contains a single cycle, d ∈ V , and let
d 6= v ∈ V be a part of this cycle. Hence there are two al-
ternative paths from v to d – p1 ⊂ E and p2 ⊂ E (one of
them is actually a part of fd(G)). f is path ordinal invari-
ant if it treats those paths as such: Taking an edge e′ ∈ pi
(i ∈ {1, 2}) that is not maximal or minimal in p1∪p2, we de-
fine W ′ as W (e) = W ′(e) for e ∈ E \ {e′} and allow W’(e’)
to be any value it chooses as long as for every e′′ ∈ pi if
W (e′) ≥ W (e′′) then W ′(e′) ≥ W ′(e′′) = W (e′′), and the
path from v to d will not change in fd(G(V,E,W ′)) (see ex-
ample Figure 3).
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Figure 3: Selected path does not change when the
bottom right edge is slightly increased.

5. MINIMAL SPANNING TREE

Theorem 1. A robust, scale invariant, shift invariant,
monotone, first-hop (axioms 1-5) routing function f , for any
graph G(V,E,W ) and d ∈ V , fd(G) will always be a minimal
spanning tree of G.

Reminder 1. As our minimal spanning tree proof relies
on the Kruskal algorithm, we will briefly describe it:

1. Order edges according to weights

2. Define a set S, initialized to the empty set.

3. Going over edges from lightest to heaviest, if the set
S ∪ {e} has no cycles, S = S ∪ {e}.

Proof Proof of Theorem 1. We shall prove the the-
orem using complete induction on the number of non-cycle
lightest edges in the tree fd(G). Hence, we shall begin by
proving that the lightest edge in the graphG is in the routing
tree T = fd(G). Assuming we are mistaken, let us consider
the lightest edge in G – e = (u, v) ∈ E – and assume e /∈ T .
We create G′(V,E′,W ) = fd(G) ∪ {e}, and thanks to the
robustness axiom, we know fd(G) = fd(G′).

If v’s path to d in fd(G′) goes through u, we shall switch
the nodes’ names, so that v’s path to d does not pass through
u. As e is not in fd(G′), there is an edge e′ = (u, s) that is
the first step from u towards d. We now define x = W (e)
and y = W (e′), and due to our minimality assumption, we
know x < y.

Using the monotonicity axiom, we change graph weights
to W ′ that is identical to W except that e′ weight is large
enough so that we create a tree T ′ in which there is a path
from s to d that does not pass through u (e.g., the same
path that is in fd(G′)), and v passes through u towards d
(i.e., e ∈ T ′). We define y′ = W ′′(e′).

Using scale invariance we now multiply all edges by y−x
y′−x

,

and using shift invariance, we add to all edges y − y−x
y′−x

y′.
This means the weight of edge e is now

x
y − x
y′ − x + y − y − x

y′ − xy
′ = (x− y′) y − x

y′ − x′ + y = x

While the weight of edge e′ is now

y′
y − x
y′ − x + y − y − x

y′ − xy
′ = y

However, the routing tree contains e and not e′, and a
path from both v and s to d, contradicting the “first hop”
axiom, which should have caused e′ to be chosen over e, as
the edge weights for e and e′ have not changed.

We now turn to the induction step – we assume all bottom
weighted k−1 edges that do not create a cycle are included in



the tree T = fd(G), and we now seek to include the k-lightest
edge that does not create a cycle. We pursue a similar path
as we did as previously, and we shall mark the edge as e =
(u, v), and assume it is not included in T = fd(G), and
instead e′ = (u, s) is included, and there is a path to d from
v and s. Again, we create G′(V,E′,W ) = fd(G) ∪ {e}, and
thanks to the robustness axiom, we know fd(G) = fd(G′).
Using monotonicity we create weights W ′ that just increase
e′ weight, so that G′′ = (V,E′,W ′) has T ′ = fd(G′′) which
include the same bottom k which do not create cycles (from
the induction hypothesis), and u reaches d via the edge e.
Recall that we know the bottom k − 1 edges will definitely
be in fd(G′′), and we wish to ensure that there will still be a
path from v to d and from s to d. The same arguments used
in the initial step of the induction ensure that, as well as
returning the weights of e and e′ to their values in G, while
routing u through e and not e′ in the routing tree, reaching
a contradiction with our initial assumption due to the “first
hop” axiom.

What is left is to show MST indeed follows our axioms:

Robustness (axiom 1) Trivial thanks to the Kruskal al-
gorithm – if the removed edge (e′) was not in the rout-
ing tree, it means it was not selected in the first place,
and hence the same routing tree will be chosen. If it
was, then any edge added after its removal (e′′) closed
a cycle with it, and hence, if affecting the edges in any
path that did not include e′, it means e′′ closes a cycle
with them, hence e′ would have closed a cycle as well.

Scale invariance (axiom 2) Multiplying all edges by a
fixed amount does not change their order in relation
to others, hence Kruskal will choose the same routing
tree.

Shift invariance (axiom 3) Adding a fixed amount to all
edges does not change their order in relation to others,
hence Kruskal will choose the same routing tree.

Monotonicity (axiom 4) Giving an edge the maximal pos-
sible edge value ensures it will only be selected if no
other edge can replace it – and if there exists a tree
without some edge, we know it will be chosen before.

“First hop” (axiom 5) Kruskal ensures that if there are
the same possible options of connecting a node to the
tree, only the lightest edge will be chosen.

6. SHORTEST PATH

Theorem 2. A robust, scale invariant, monotone, and
path cardinal invariant (axioms 1-2, 4, 6) routing function
f , for any graph G(V,E,W ) and d ∈ V , fd(G) will always
be a shortest path graph to d of G.

Proof. Suppose T = fd(G) is not a shortest path routing
tree. Let u be the closest node to d that is not connected to
d with a shortest path. Hence, there is an edge e = (u, v)
which will make u’s path a shortest path one (v, being closer
to d, is already connected to d with a shortest path), but
e /∈ T , and instead e′ = (u, s) is included in T . Using
robustness, we create G′(V,E′,W ) = T ∪e. G′ contains two
alternate paths from u to d, and fd(G) = fd(G′).

Using path cardinal invariant, we “move” all the value of
the edges on each path to it’s “source”, i.e., to (u, v) or (u, s)
(we do this by adding to the weight of (u, v) and (u, s) the
value of

∑
e∈(p1∪p2)\(p1∩p2)W (e) − W ((u, v)) − W ((u, s)),

and reduce from W ((u, s)) the weight of all edges of the
path from u to d through (u, v) and vice versa). We shall
refer to W (e) = x and W (e′) = y. We now use monotonicity
to create a new tree, with e but without e′, with the graph’s
weight now W ′ (identical to W except for increase in e′

weight). Once again, we transfer all value of the paths from
u to d to e and e′ respectively, with everything else being 0.
Now, using monotonicity, we increase the weight of e′ above
that of e, with the weight of (u, v) being x (its path weights
have not changed) and (u, s) being y′.

Finally, we multiply all edges by y−x
y′−x

(using scale invari-

ance), and using path cardinal invariance, we add to e and
e′ the amount y − y−x

y′−x
y′. The weight of e is now:

x
y − x
y′ − x + y − y − x

y′ − xy
′ = (x− y′) y − x

y′ − x + y = x

While the weight of edge e′ is now

y′
y − x
y′ − x + y − y − x

y′ − xy
′ = y

As all edges are the same weight as before, therefore we
reached a contradiction regarding the inclusion of e′ instead
of e (whose weights are the same as well).

We will now show shortest path follows our axioms:

Robustness (axiom 1) Removing an edge, at most, elim-
inates a potential path from a node to the destination
d. If the path was not on the shortest path, the previ-
ous shortest path remains so.

Scale invariance (axiom 2) Multiplying by a fixed amount
all edges means the value of each path is multiplied by
the same amount, maintaining their relative ordering,
hence what was shortest remains so.

Monotonicity (axiom 4) Giving an edge the value of the
sum of all other edges ensures it will only be selected
if no other path can replace it — and if there exists a
tree without some edge, we know there is such a path.

Path cardinal invariance (axiom 6) Having multiple paths
from a node, adding the same amount to each path
doesn’t change the ordering of the paths (i.e., which
path is“shorter”than another), hence selection of short-
est path will be identical.

7. WEAKEST LINK
Theorem 3. A robust, scale invariant, shift invariant,

inverse monotone, and path ordinal invariant (axioms 1-4,
7) routing function f , for any graph G(V,E,W ) and d ∈ V ,
fd(G) will always be a weakest link graph to d of G.

Proof. Suppose T = fd(G) is not a weakest link routing
tree. Let u be a node that requires just one edge missing
from T that is not connected to d with a weakest link1, and
1such a node exists as there is a node not connected by
weakest link in T , hence adding the necessary path for that
node, taking the node just before the final edge that we add
to T (i.e., closest to d), answers our criterion.



we mark this edge as e = (u, v). Since e /∈ T , there is an edge
instead e′ = (u, s) that is included in T . Using robustness,
we create G′(V,E′,W ) = T ∪ e. G′ contains two alternate
paths from u to d, and fd(G) = fd(G′).

Using path ordinal invariant, we change the value of all
edges on each alternate path from u to d to its weakest link
value (we do this by taking the 2nd smallest edge in the path
and changing its value to that of the weakest link, which by
the axiom does not change the path chosen, and we proceed
doing so to all edges on the path). We shall refer to W (e) =
x and W (e′) = y (from assuming u is not in a weakest link
path we know x > y). Using inverse monotonicity, we create
W ′ identical to W except for e′ weight, that is low enough
that it is not included in fd(G′′(V,E′,W ′)). Once again, we
change the values of the paths from u to d to their weakest
link value (this is only relevant for the path through e′, as
the other path has not changed). We term the the new value
for e′ – y′, and we know x > y′.

Finally, we multiply all edges by y−x
y′−x

(using scale in-

variance), and using shift invariance, we add to all edges
y − y−x

y′−x
y′. Edge e now has the weight:

x
y − x
y′ − x + y − y − x

y′ − xy
′ = (x− y′) y − x

y′ − x + y = x

While the weight of edge e′ is now

y′
y − x
y′ − x + y − y − x

y′ − xy
′ = y

As all edges are the same weight as before, hence we
reached a contradiction regarding the inclusion of e′ instead
of e.

We shall now show weakest link also follows our axioms:

Robustness (axiom 1) Removing an edge, at most, elim-
inates a potential path from a node to the destination
d. If the path was not a weakest link, the previous
weakest link remains so.

Scale invariance (axiom 2) Multiplying by a fixed amount
all edges means the value of each path (its smallest
edge) is multiplied by the same amount, maintaining
their relative ordering, hence what was weakest link
remains so.

Shift invariance (axiom 3) Adding a fixed amount all edges
means the value of each path (its smallest edge) is
added the same amount, maintaining their relative or-
dering, hence what was weakest link remains so.

Monotonicity (axiom 4) Giving an edge the value of the
minimum of all other edges ensures it will only be se-
lected if no other path can replace it — and if there
exists a tree without some edge, we know there is such
a path.

Path ordinal invariance (axiom 7) Having multiple paths
from a node, the weakest link edge (the one with small-
est value) of the selected path can’t become lower than
the weakest link of the non-selected path, hence weak-
est link choice does not change.
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Figure 4: Lack of robustness results in a minimal
spanning tree/shortest path routing (above) ending
up in a routing tree that is weakest link but not
MST or shortest path (below).

8. TIGHTNESS OF AXIOMS
We will now show that the above characterizations are

tight, and that without each axiom, other routing algorithms
become possible.

Theorem 4. All MST axioms (1-5) are necessary, and
without even one of them, other routing algorithms are pos-
sible.

Proof. Going over all MST axioms, we detail potential
algorithms which work with all axioms except that one, and
are not MST. We will refer below to each relaxed axiom,
and to the new/additional system which can obtained by
that relaxation:

Robustness See example in Figure 4. Apply MST to any
other graph that is not a linear transformation of the
bottom one.

Scale invariance See example in Figure 5. On all graphs
except those which contain as a subgraph a linear trans-
formations of the bottom one, apply MST.

Shift invariance See example in Figure 6. On all graphs
except those which contain as a subgraph a linear trans-
formations of the bottom one, apply MST.

Monotonicity A maximal spanning tree implements all
axioms but monotonicity.

First Hop Weakest link implements all of the other ax-
ioms.

Theorem 5. All shortest path axioms (1-2, 4, 6) are nec-
essary, and without even one of them, other routing algo-
rithms are possible.

Proof. Going over all shortest path axioms, we detail
potential algorithms which work with all axioms except one,
and are not shortest path. We will refer below to the each
relaxed axiom, and to the new/additional system which can
obtained by that relaxation:
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Figure 5: Eliminating scale invariance results in a
minimal spanning tree/shortest path/weakest link
routing (above) ending up in neither (below).
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Figure 6: Eliminating shift invariance results in a
minimal spanning tree/weakest link routing (above)
ending up in neither (below).

Robustness See example in Figure 4. Apply shortest path
to any other graph that isn’t a scale of the structure
of the bottom one. Any edge in that structure that is
100 times all the others is removed in the tree.

Scale invariance See example in Figure 5. Taking the bot-
tom example and for the group that includes all graphs
for which it is a subgraph and those that can be formed
by path cardinal invariance, and only for them do not
apply shortest path but rather the example (it won’t
trample on the top example, as if the upper example
adds y to lower-right edge, and y to the rest, and the
bottom example adds x, it would require 2+x = 4+x,
reaching an impossibility).

Inverse Monotonicity A longest path tree implements all
axioms but monotonicity.

Path cardinal invariant Minimal spanning tree implements
all other axioms.

Theorem 6. All weakest link axioms (1-4, 7) are neces-
sary, and without even one of them, other routing algorithms
are possible.

Proof. Going over all weakest link axioms, we detail po-
tential algorithms which work with all axioms except one,
and are not weakest link. We will refer below to the each
relaxed axiom, and to the new/additional system which can
obtained by that relaxation:

Robustness See example in Figure 4. Apply weakest link
to any other graph that isn’t of the structure of the
bottom one, Any edge that in that structure that is
100 times less that all the others’ weight is removed.

Scale invariance See example in Figure 5. Taking the
bottom example and for the group that includes all
graphs for which it is a subgraph and those that can
be formed by shift invariance and only for them do not
apply weakest link but rather the example (it won’t
trample on the top example, as it can’t be reached by
shift invariance, and as the edge weights are all min-
imal/maximal, they change change by ordinal invari-
ance).

Shift invariance See example in Figure 6. Taking the
bottom example and for the group that includes all
graphs for which it is a subgraph and those that can
be formed by scale invariance and only for them do not
apply weakest link but rather the example (it won’t
trample on the top example, as it can’t be reached by
shift invariance, and as the edge weights are all min-
imal/maximal, they change change by ordinal invari-
ance).

Monotonicity A strongest link tree implements all axioms
but monotonicity.

Path ordinal invariant Minimal spanning tree implements
all other axioms.

9. DISCUSSION
In this paper we explore the basic issue of routing – how

should information flow through a network and what prop-
erties might this process have. In the process of considering
this issue we developed several properties we believe might
be desirable by system planners. For example, robustness, or
the ability of a routing protocol to keep small changes from
disrupting the whole routing process, is a property especially
required in fast, changing networks.

Naturally, creating a structure from possible interactions
between agents defined by a connections’ graph is not lim-
ited just to information routing in networks such as the in-
ternet. Looking at organizations, where workers are con-
nected according to their ability to work with other work-
ers, and instead of routing messages between them we seek
to construct an organizational hierarchy, we face a similar
challenge. Again, robustness is a desirable property, as it
means that if some workers have a worsening relationship
with others, if they’re not very senior in the organization, it
has little effect on many others. In this case, we may con-
sider the “economic model” (“first hop” axiom) appropriate
as well – if workers only interact with their boss, we only
care about the edge from each worker to his/her boss, and
each worker does not care what happens further up in the
hierarchy2.

Beyond setting up the axioms, we also examined common
routing algorithms – minimal spanning tree, shortest path
and weakest link, and fully characterized them. Obviously,
this is only the beginning of the road for this line of research
– further steps will entail developing more axioms and using
them to characterize more algorithms, with the aim of giving
a set of tools for system designers, allowing them to choose
desirable properties which would dictate appropriate routing
protocols.
2Similarly, in a highly centralized organization, a path car-
dinal invariance is probably a sensible axiom.
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