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Abstract. Distributed cryptographic protocols such as Bitcoin and
Ethereum use a data structure known as the block chain to synchro-
nize a global log of events between nodes in their network. Blocks, which
are batches of updates to the log, reference the parent they are extending,
and thus form the structure of a chain. Previous research has shown that
the mechanics of the block chain and block propagation are constrained:
if blocks are created at a high rate compared to their propagation time
in the network, many conflicting blocks are created and performance suf-
fers greatly. As a result of the low block creation rate required to keep
the system within safe parameters, transactions take long to securely
confirm, and their throughput is greatly limited.
We propose an alternative structure to the chain that allows for oper-
ation at much higher rates. Our structure consists of a directed acyclic
graph of blocks (the block DAG). The DAG structure is created by allow-
ing blocks to reference multiple predecessors, and allows for more “for-
giving” transaction acceptance rules that incorporate transactions even
from seemingly conflicting blocks. Thus, larger blocks that take longer
to propagate can be tolerated by the system, and transaction volumes
can be increased.
Another deficiency of block chain protocols is that they favor more con-
nected nodes that spread their blocks faster—fewer of their blocks con-
flict. We show that with our system the advantage of such highly con-
nected miners is greatly reduced. On the negative side, attackers that
attempt to maliciously reverse transactions can try to use the forgiving
nature of the DAG structure to lower the costs of their attacks. We pro-
vide a security analysis of the protocol and show that such attempts can
be easily countered.

1 Introduction

Bitcoin, a decentralized digital currency system [10], uses at its core a distributed
data structure known as the block chain—a log containing all transactions con-
ducted with the currency. Several other distributed systems, such as Ethereum, a
general distributed applications platform, have extended Bitcoin’s functionality,
yet still rely on a similar block chain to synchronize information between nodes.

As Bitcoin, Ethereum, and their likes gain wider acceptance, it is expected
that pressure to include more data in their blocks will increase as well. Due to



bandwidth constraints, larger blocks propagate through the network less effi-
ciently, and may thus result in suboptimal performance if too many transactions
are included. This is mainly due to the uncoordinated creation of blocks by differ-
ent nodes which results in conflicts. The current protocols dictate that whenever
conflicts occur, only a single block is adopted, and the others are discarded.

This paper explores an alternative mechanism for the formation of the block
chain that is better suited for such protocols when block sizes are large, or when
blocks are created often. Our modification allows the inclusion of transactions
from conflicting blocks. We thus create an incentive for nodes to attempt and
include different transactions, and thereby increase throughput.

Conflicts, and the structure of the block chain The block chain in each
protocol is replicated at every node and assists nodes in reaching a consensus on
the state of all “accounts”. Blocks, which make up the chain, contain an identifier
(a cryptographic hash) of their predecessor in the chain, as well as a set of
transactions that are consistent according to the state of the ledger represented
by the chain they extend. To avoid creating a monopoly on the approval of
transactions, all nodes have the ability to create blocks. To create a block, a node
(also known as a miner) has to solve a computationally intense proof of work
problem (the proof of work computation essentially consists of guessing inputs
to a cryptographic hash function which succeeds only probabilistically). Once a
block is created, it is distributed to the rest of the network. Blocks may be created
by different nodes at roughly the same time, and may thus extend the same
parent block. Such blocks may include different subsets of transactions, some
possibly conflicting (conflicting transactions are those that move the same money
to different destinations – they cannot be allowed to co-occur). The protocol
therefore includes a mechanism for choosing which block survives to extend the
chain, while the other conflicting ones are effectively ignored. The mechanism
used by Bitcoin is this: given several extensions of the current chain, pick the
longest chain as the version to adopt. Ethereum on the other hand uses a different
selection strategy which is a variant of GHOST [13] (readers unfamiliar with the
basic Bitcoin protocol are referred to [10]).

The chain selection rule can be exploited by a malicious node to reverse a
payment, an attack known as double-spend. The attacker can attempt to build
a secret chain of blocks which does not contain the transaction and later, if its
chain is long enough, replace the main chain, thereby reversing the payment.

Previous work [6, 13] has shown that with increasing block sizes (or equiv-
alently with increasing block creation rates), more stale (off-chain) blocks are
created. This, in turn, leads to several problems: First, the security of the pro-
tocol against malicious attacks suffers. Second, increases in block size do not
translate to linear increases in throughput (as the contents of off-chain blocks
are not included in the ledger). Finally, the situation in which blocks conflict
puts smaller less connected miners at a disadvantage: They earn less than their
respective share of the rewards, and may be slowly pushed out of the system due
to competition with larger miners, a fact which endangers the decentralization
of Bitcoin.



The problems mentioned above form barriers to the scalability of block chain
protocols. If block sizes are not increased, competition between transactions that
attempt to enter the block chain will raise fees to high levels that discourage use
of the protocol.

Indeed, Ethereum’s adopted chain selection protocol was specifically designed
to provide stronger security guarantees exactly in these high throughput set-
tings [14], but other issues such as the skewed reward distribution at high rates,
or the loss of throughput due to excluded blocks have not been improved. Our
suggested modification aims to provide an additional improvement, and works
well with GHOST, with its variant used by Ethereum, with the standard longest-
chain protocol, and in fact, with any protocol that selects a “main” chain.3

The Block DAG, and inclusive protocols We propose to restructure the
block chain into a directed acyclic graph (DAG) structure, that allows trans-
actions from all blocks to be included in the log. We achieve this using an
“inclusive” rule which selects a main chain from within the DAG, and then se-
lectively incorporates contents of off-chain blocks into the log, provided they do
not conflict with previously included content. An important aspect of the Inclu-
sive protocol is that it awards fees of accepted transactions to the creator of the
block that contains them—even if the block itself is not part of the main chain.
Such payments are granted only if the transaction was not previously included
in the chain, and are decreased for blocks that were published too slowly.

Analysis of such strategies is far from simple. We employ several game theo-
retic tools and consider several solution concepts making different assumptions
on the nodes (that they are profit maximizers, cooperative, greedy-myopic, or
even paranoid and play safety-level strategies). In all solution concepts one clear
trend emerges: nodes play probabilistically to minimize collisions, and do not
choose only the highest fee transactions that would fit into their block.

One potential negative aspect of our suggestion is that attackers that try to
double-spend may publish the blocks that were generated in failed attempts and
still collect fees for these blocks. We show that this strategy, which lowers the
costs of double-spend attacks, can be easily mitigated with slightly longer waiting
times for final transaction approval, as the costs of an attacker grow significantly
with the waiting time.4 We additionally consider a new attack scenario (which
has not been analyzed in previous work) in which an attacker creates a public
fork in the chain in order to delay transaction acceptance by nodes.

Another issue that arises as many conflicting blocks are generated by the pro-
tocol, is the problem of selfish mining [7], in which miners deviate from Bitcoin’s
proposed strategy to increase their gains. Inclusive protocols remain susceptible
to this form of deviation as well, and do not solve this issue.

To summarize, our main contributions are:

3 For the sake of brevity, we do not go into the details of GHOST or of its Ethereum-
variant, except where specifically relevant.

4 This is guaranteed only if the attacker has less than 50% of the computational power
in the network.



1. We utilize a directed acyclic structure for the block graph in which blocks
reference several predecessors to incorporate contents from all blocks into
the log (similar structures have already been proposed in the past, but not
to include the contents of off-chain blocks).

2. We provide a game theoretic model of the competition for fees between the
nodes under the new protocol.

3. We analyze the game under several game theoretic solution concepts and
assumptions, and show that in each case nodes randomize transaction se-
lection from a wider range of transactions. This is the key to the improved
performance of the protocol.

4. We demonstrate that Inclusive protocols obtain higher throughput, more
proportional outcomes that less discriminate smaller, less-connected players,
and that they suffer very little in their security in comparison to non-inclusive
protocols. We consider both security against double-spend attempts, as well
as attackers that are trying to delay transaction acceptance in the network.

2 From Trees to Directed Acyclic Graphs (DAGs)

We now begin to describe our proposed changes to the protocol. We start with
a structural change to the blocks that will enable further modifications. In the
current Bitcoin protocol, every block points at a single parent (via the parent’s
hash), and due to natural (or malicious) forks in the network, the blocks form a
tree.

We propose, instead, the node creating the block would list all childless
blocks that it was aware of. Surely, this added information does not hurt; it
is simple to trace each of the references and see which one leads, for example,
to the longest chain. We thus obtain a directed acyclic graph (DAG) in which
each block references a subset of previous blocks. We assume that when block
C references B, C’s creator knows all of B’s predecessors (it can request them).
The information that can be extracted from a block’s reference list is sufficient to
simulate the underlying chain selection rule: we can simulate the longest-chain
rule, for example, by recursively selecting in each block a single link—the one
leading to the longest chain.

The provision of this additional information amounts to a “direct revelation
mechanism”: Instead of instructing nodes to select the chain they extend, we
simply ask them to report all possible choices, and other nodes can simulate their
choice, just as they would have made it (the term direct revelation is borrowed
from economics where it is widely used in mechanism design [11]).

In fact, any chain selection protocol can be simulated in this manner, as the
references provide all information needed to determine the choice that the block
creator would have made when extending the chain. The only issue that needs to
be handled is tie breaking (as in the case of conflicting chains of equal length). To
do so, we ask nodes to list references to other blocks in some order, which is then
used to break ties. Note that nodes are only required to list the childless nodes



in the DAG; there is no need to list other nodes, as they are already reachable
by simply following the links.5

Formally, we denote by BDAG the set of all directed acyclic block graphs
G = (V,E) with vertices V (blocks) and directed edges E, where each B ∈ V
has in addition an order ≺B over all its outgoing edges. In our setup, an edge
goes from a block to its parent, thus childless vertices (“leaves”) are those with
no incoming edges. Graphs in BDAG are required to have a unique maximal
vertex, “the genesis block”. We further denote by sub(B,G) the subgraph that
includes all blocks in G reachable from B.

An underlying chain selection rule F is used to decide on the main chain in
the DAG (e.g., longest-chain or GHOST). The rule F is a mapping from block
DAGs to block chains such that for any G ∈ BDAG, F (G) is a maximal (i.e.,
non-extendable) chain in G. The order ≺B is assumed to agree with F , in the
sense that if A is one of B’s parents and A ∈ F (sub(B,G)), then A is first in
the order ≺B .

2.1 Exploiting the DAG Structure—The Inclusive Protocol

We define Inclusive-F , the “Inclusive” version of the chain selection rule F , which
incorporates non-conflicting off-chain transactions into a given blocks accepted
transaction set. Intuitively, a block B uses a postorder traversal on the block
DAG to form a linear order on all blocks. If two conflicting transactions appear,
the one that appeared earlier according to this order is considered to be the one
that has taken place (given that all previous transactions it depends on have
also occurred). Thus, we use the order on links that blocks provide to define an
order on blocks, which we then use to order transactions that appear in those
blocks, and finally, we confirm transactions according to this order.

To make the Inclusive algorithm formal, we need to provide a method to de-
cide precisely the set of accepted transactions. Bitcoin transactions are composed
of inputs (sources of funds) and outputs (the targets of funds). Outputs are, in
turn, spent by inputs that redirect the funds further. We define the consistency
of a transaction set, and its maximality as follows:

Definition 1. Given a set of transactions T , a transaction tx is consistent with
T if all its inputs are outputs of transactions in T , and no other transaction in
T uses them as inputs. We say that T is consistent, if every transaction tx ∈ T
is consistent with T \ {tx}.

Definition 2. We say that a consistent set of transactions T from a block DAG
G is maximal, if no other consistent set T ′ of transactions from G contains T .

5 DAGs are already required by GHOST (although for different reasons), and
Ethereum’s blocks currently reference parent blocks as well as “uncles” (blocks that
share the same parent as their parent). Thus, this modification is quite natural.



The algorithm below performs a postorder traversal of the DAG sub(B,G).
Along its run it confirms any transaction that is consistent with those accepted
thus far. The traversal backtracks if it visits the same block twice.6

The algorithm is to be called with arguments Inclusive-F (G,B, ∅), initially
setting visited(·) as False for all blocks. Its output is the set of transactions it
approves.

Algorithm 1. Inclusive-F (G,B, T )
Input: a DAG G, a block B with pointers to predecessors (B1, ..., Bm) (ordered
according to ≺B),

7 and a set of previously confirmed transactions T .

1. IF visited(B) RETURN T
2. SET visited(B):=True
3. FOR i = 1 TO m:
4. T = Inclusive-F (G,Bi, T )
5. FOR EACH tx ∈ B
6. IF (tx is consistent with T ) THEN T = T ∪ {tx}
7. RETURN T

We say that B is a valid block if at the end of the run on sub(B,G) we
have B ⊆ T .8 The algorithm’s run extends ≺B to a linear order on sub(B,G),
defined by: A ≺B A′ if Inclusive-F (G,B, ∅) visited A before it visited A′. The
following proposition states that the algorithm provides consistent and maximal
transaction sets:

Proposition 1. Let T be the set returned by Inclusive-F (G,B, ∅). Then T is
both consistent and maximal in sub(B,G).

The proof is immediate from the algorithm.
An important property of this protocol is that once a transaction has been

approved by some main chain block B of G, it will remain in the approved set
of any extending block as long as B remains in G’s main chain. This is because
transactions confirmed by main chain blocks are first to be included in the ac-
cepted transaction sets of future main chain blocks. Since both in longest-chain
and GHOST blocks that are buried deep in the main chain become increasingly
less likely to be replaced, the same security guarantees hold for transactions
included in their Inclusive versions.

Fees and Rewards Each transaction awards a fee to the creator of the first
block that included it in the set T . Formally, let A be some block in sub(B,G).
Denote by T (A) the set of transactions which block A was the first to contain,

6 It is important to note that the algorithm below describes a full traversal. More
efficient implementations are possible if a previously traversed DAG is merely being
updated (with methods similar to the unspent transaction set used in Bitcoin).

7 If B is the genesis block, which has no predecessors, m = 0.
8 The Inclusive algorithm can also handle blocks that have some of their transactions
rejected.



according to the order ≺B . Then (according to B’s world view) A’s creator is
awarded a fraction of the fee from every tx ∈ T (A). Although näıvely we would
want to grant A all of T (A)’s fees, security objectives cannot always permit it.
This is one of the main tradeoffs in the protocol: On the one hand, we wish to
award fees to anyone that included a new transaction. This implies that poorly
connected miners that were slow to publish their block will still receive rewards.
On the other hand, off-chain blocks may also be the result of malicious action,
including published blocks from a failed double-spend attack. In this case we
would prefer no payoff would be received. We therefore allow for a somewhat
tolerant payment mechanism that grants a block A a fraction of the reward
which depends on how quickly the block was referenced by the main chain. The
analysis that will follow (in Sect. 3) will justify the need for lower payments.

Formally, for any block A ∈ G define by pre(A) the latest main chain block
which is reachable from A, and by post(A) the earliest main chain block from
which A is reachable; if no such block exists, regard post(A) as a “virtual block”
with height infinity; if A is in the main chain then pre(A) = post(A) = A.
Denote c(A) := post(A).height − pre(A).height; c(·) is a measure of the delay
in a block’s publication (with respect to the main chain).

In order to penalize a block according to its gap parameter c(·) we make use
of a generic discount function, denoted γ, which satisfies: γ : N∪ {0} → [0, 1], it
is weakly decreasing, and γ(0) = 1. The payment for (the creator of) block A is
defined by:

γ (c(A)) ·
∑

w∈T (A)

v(w),

where v(w) is the fee of transaction w. In other words, A gains only a fraction
γ(c(A)) of its original rewards. By way of illustration, consider the following
discount function:

Example 1.

γ0(c) =

1 0 ≤ c ≤ 3
10−c
7 3 < c < 10

0 c ≥ 10
(1)

γ0 grants a full reward to blocks which are adequately synchronized with the
main chain (γ0(c) = 1 for c ≤ 3), on the one hand, and pays no reward at all to
blocks that were left “unseen” by the main chain for too long, on the other hand
(γ0(c) = 0 for c ≥ 10); in the mid-range, a block is given some fraction of the
transaction rewards (γ0(c) =

10−c
7 for 3 < c < 10).

Money Creation In addition to fees, Bitcoin and other cryptocurrencies use
the block creation process to create and distribute new coins. Newly minted coins
can also be awarded to off-chain blocks in a similar fashion to transaction fees,
i.e., in amounts that decrease for blocks that were not quickly included in the
main chain. A block’s reward can therefore be set as a fraction γ(c(A)) of the
full reward on the chain.9 As our primary focus is on the choice of transactions

9 The total reward can be automatically adjusted to maintain a desired rate of money
creation by a process similar to the re-targeting done for difficulty adjustments.



to include in the block, we assume for simplicity from this point on, that no
money creation takes place (i.e., that money creation has decayed to negligible
amounts—as will eventually occur for Bitcoin).

Now that we have defined the Inclusive protocol, we begin to analyze its
implications.

3 Security

The original security analysis of Satoshi ([10]), as well as analysis done by oth-
ers [12, 13], has considered the probability of a successful double-spend attack
under the regular non-inclusive scheme. An alternative analysis may instead
measure the cost of the attack rather than their success probability (both have
been analyzed in [12]).

Below we prove that the Inclusive version of the protocol is at least as secure
as the non-inclusive one, in terms of the probability of successful attacks. In
addition, we show that the cost of an attack under Inclusive can be made high,
by properly modifying the acceptance policy.

3.1 Acceptance Policy

The recipient of a given transaction observes the network’s published blocks,
and needs to decide when to consider the payment “accepted”, that is, when it
is safe to release the goods or services paid for by the transaction. He does so by
making sure his transaction is included and confirmed by the main chain, and
calculating the probability that it would be later excluded from it.

Probability of Successful Attacks We now compare the probability of a
successful attack under the regular longest-chain protocol to the one under its
Inclusive version. Our method can apply to other main chain rules as well (e.g.,
GHOST). Recall that under Inclusive the blocks form a DAG, whereas when
Inclusive is not implemented they form a tree (see Sect. 2). Notice that if G(t)
is the block DAG at time t, then if the network would have followed the non-
inclusive setup, its block tree T (t) would be precisely the subgraph of G(t)
obtained by removing all edges in blocks’ reference list apart from the main
edges (i.e., the first pointer in every block). For any DAG G let F (G) be its
main chain according to the underlying selection rule F (G can also be a tree).

Theorem 2. Let G(t) be the block DAG at time t, and let T (t) be the block
tree that is obtained from G(t) by discarding the non-main edges. For any block
B ∈ F (G(t)),

∀s > t : Pr(B /∈ F (G(s))) = Pr(B /∈ F (T (s))) (2)

Proof. This is immediate from the fact that Inclusive does not change the way
the main chain is selected, therefore, for all s: F (G(s)) = F (T (s)). ⊓⊔



As a corollary, the probability that a transaction would be excluded from the
main chain does not become higher under Inclusive, as the security guarantees
of main chain blocks apply to individual transactions as well (see the discussion
succeeding Algorithm 1). In particular, any acceptance policy employed by a
recipient of funds in a network following a non-inclusive protocol (see, e.g., [10,
12, 13]) can be safely carried out when Inclusive is implemented.

Cost of Attacks As mentioned at the beginning of this section, one may be
interested in measuring the cost of a double-spend attack rather than its success
probability. A potential drawback of including transactions from off-chain blocks
is that it mitigates the cost of a failed double-spend attack. Double spend attacks
consist typically of chains constructed by the attacker that are initially kept
secret. The construction of blocks requires computational resources. Under the
non-inclusive setup, when the attacker withdraws from the attack (usually after
failing to build blocks faster than the network), its blocks are discarded. In
contrast, under the Inclusive protocol, the attacker may still publish its secret
chain and gain some value from transactions contained inside.

However, the recipient of funds can cancel this effect by waiting longer before
accepting the payment. Indeed, if the attacker is forced to create long secret
chains, its blocks suffer some loss due to the lower reward implied by the function
γ(·).

To formalize this we provide first some definitions and notations. Denote by
G(t) the published developing block DAG at time t, and assume some main chain
block Btx confirms the transaction tx (that is, tx ∈ Inclusive-F (G(t), Btx, ∅)).
Let H(t) ⊆ G(t) be the set of blocks from which Btx is reachable, and denote
the main chain atop Btx (including itself) by Hmain(t) ⊆ H(t). Let A(t) ⊆
G(t) \ H(t) be the set of blocks which satisfy post(·) ≻ Btx; these are blocks
which can be used by the attacker to reverse the transaction (even though the
attacker did not necessarily create all of them), and the requirement on their
post(·) block is to exclude from this set blocks earlier than Btx, under the order
of G (which do not affect the resolution of future conflicts).

Denote by val the expected reward from a block, under the Inclusive reward-
scheme. val is equal, in equilibrium, to the expected cost of creating a block.
We will simplify our analysis by assuming that val is constant. Finally, for con-
venience, we analyze the case where the underlying chain selection rule (F ) is
GHOST; the results apply to the longest-chain rule as well, after some slight
changes.

Lemma 3. Assume the attacker holds a fraction of at most q of the computa-
tional power. If |Hmain(t)| = n, |A(t)| = m, and the attacker has created k secret
blocks, then the cost of a failed attack satisfies

cost ≥
m+k∑

h=m+1

(1− γ(n+ 2− h)) · val (3)



Proof. In the best case for the attacker, its blocks form a chain which is built
atop A(t). If Ah is its hth block (1 ≤ h ≤ k) then pre(Ah).height < Btx.height−
1 +m + h, or otherwise Ah necessarily references a block in Hmain as its main
parent (recall that a block’s ordered reference list is forced to agree with F ), and
in particular it supports tx and does not participate in the attack.

In addition, the attacker’s secret blocks are not published before the accep-
tance, hence their post(·) block height is at least Btx.height + n. We conclude
that the discount parameter on Ah is at most

γ ((Btx.height+ n)− (Btx.height− 1 +m+ h− 1)) ,

hence its cost is at least (1− γ(n+ 2−m− h))·val. After a change of parameter
we arrive at (3). ⊓⊔

We now make use of this result to show that a payee that follows the ac-
ceptance policy introduced in [13] can make the attack cost arbitrarily high by
waiting sufficiently before acceptance.

Corollary 4. Let tx be a transaction in G(t), and assume an attacker builds
a secret chain that does not confirm tx, and that it persists with its attack as
long as the payee has not approved the transaction. Then the minimal value
of the double-spend needed for the attack to be profitable in expectation grows
exponentially with t.

Proof. Let |Hmain(t)| = n, |H(t)| = N, and |A(t)| = m. The probability that
an attacker with a fraction q < 0.5 of the computational power has managed

to create k secret blocks is at most e−qλ(t−t0) (qλ(t−t0))
k

k! , where t0 is the time
it began its attack. Following the dynamics of GHOST, the payee can wait
for a collapse to occur, i.e., for Btx to be included in the main chain of all
honest nodes. Consequently, the probability that the attack will be successful is

upper bounded by
(

q
1−q

)(N+1−m−k)+

. Here we used a worst-case assumption,

according to which the attacker is able to exploit all of the blocks in A(t) for its
attack.

In case of a successful attack the attacker profits the amount double-spent,
which we denote DS, while the profit from its blocks is offset by their creation
costs. On the other hand, the cost of a failed attack is given by (3). Calculating
the attack cost, we arrive at:

attack-cost ≥
∞∑
k=0

e−qλ(t−t0)
(qλ(t− t0))

k

k!
·

(
−DS ·

(
q

1− q

)(N+1−m−k)+

(4)

+

(
1−

(
q

1− q

)(N+1−m−k)+
)

·
m+k∑

h=m+1

(1− γ(n+ 2− h)) · val

)

For a given time t, there is a probability distribution over DAGs that will be
created by the network. This induces random variables for N = N(t), n = n(t),



and m = m(t). As t grows these become arbitrarily close to their expected values
(by the Law of Large Numbers). We can thus replace N with its expectation
(1−q)λ·t, and notice that E[n] grows with time and E[m] approaches a constant.
Isolating DS shows that its minimal value in order for E [attack-cost] to be non-
positive grows exponentially with t (assuming γ is non-trivial, that is, γ ̸≡ 1).

⊓⊔

To illustrate the growth of the attack cost, we show in Table 1 the minimal
double-spend needed in order for an attack to be profitable in expectation. The
table entries admit to the minimal DS making the attack profitable; here we
fixed N and averaged over t (in contrast to the previous corollary). In addition,
for simplicity we assumed m = 0 and n = N , corresponding to the case where
the honest network suffers no delays. The penalty function γ0 was selected as
the one from Example 1, and the expected reward from a block were normalized
so that val = 1. Notice that waiting for only one or two blocks is not safe at
all, as the attacker can easily afford to try and create longer chains under the
function γ0 that we have chosen.

Table 1. The minimal double-spend (normalized by blocks’ expected rewards, val)
needed in order for an attack to be profitable in expectation, as a function of the
number of confirmations and the attacker’s computational power.

q 1 2 3 4 5 6 7 8 9 10

2% 0 0 9.3 · 102 1.2 · 105 1.1 · 107 8.3 · 108 5.8 · 1010 3.8 · 1012 2.4 · 1014 1.3 · 1016
6% 0 0 79 3.1 · 103 8.7 · 104 2.1 · 106 4.5 · 107 9.1 · 108 1.8 · 1010 2.9 · 1011
10% 0 0 22 4.8 · 102 7.5 · 103 9.9 · 104 1.2 · 106 1.4 · 107 1.5 · 108 1.4 · 109
14% 0 0 8.5 1.3 · 102 1.3 · 103 1.2 · 104 9.4 · 104 7.1 · 105 5.1 · 106 3.2 · 107
18% 0 0 4.0 44 3.3 · 102 2.1 · 103 1.2 · 104 6.8 · 104 3.6 · 105 1.6 · 106
22% 0 0 2.0 18 1.0 · 102 5.1 · 102 2.3 · 103 9.7 · 103 3.9 · 104 1.4 · 105
26% 0 0 1.1 7.9 37 1.5 · 102 5.3 · 102 1.8 · 103 5.7 · 103 1.6 · 104
30% 0 0 0.63 3.8 15 49 1.4 · 102 4.0 · 102 1.0 · 103 2.4 · 103
34% 0 0 0.36 1.9 6.4 18 45 1.0 · 102 2.3 · 102 4.6 · 102
38% 0 0 0.20 0.92 2.8 6.9 15 30 58 1.0 · 102
42% 0 0 0.10 0.43 1.2 2.6 5.2 9.3 16 25
46% 0 0 04 0.16 0.40 0.82 1.5 2.5 3.9 5.6
50% 0 0 0 0 0 0 0 0 0 0

The results above are not quite satisfying, as they demonstrate only the costs
of an attack from a specific class: We assumed the attacker does not withdraw
before the payee’s acceptance. One could consider more sophisticated attack
policies in which the attacker might withdraw earlier in order to reduce costs. The
main obstacle here, is that there exist selfish mining strategies in which a miner
profits from withholding some of his blocks, even under the non-inclusive setup
([7]). We point out that a malicious miner can execute double-spend attacks
while employing selfish mining strategies, thereby guaranteeing itself an expected
positive profit. While Inclusive protocols reduce the cost of a failed attack, we
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Fig. 1. The fraction of computational power an attacker needs to hold as a function of
the increase in waiting time it aims to induce.

conjecture that adequate acceptance policies cancel this effect (as we have shown
in Corollary 4 for one attack profile).

3.2 Delayed Service Attack

Another possible form of an attack is that of delayed service. The acceptance
policy described above implies that if a recipient of a payment observes many
blocks in the DAG that have the potential to form a competing main chain
that will not accept his transaction, it must delay acceptance. Consequently,
an attacker may decide to create its blocks deliberately off-chain, in attempt to
increase the waiting time for transaction authorization in the network.

Notice that the attacker can never profit from a delayed service attack, say
by reversing a previous payment, as its attack blocks are immediately published
and are therefore transparent to any transaction authorizer. Moreover, the longer
the attack goes on the greater its cost, as the gap between the post(·) and pre(·)
of the participating blocks grows larger.

Assume the attacker wishes to delay the confirmation of transactions that
lie in some block B. This can be done by increasing |A(t)| = m, that is, by
publishing blocks from which B is not reachable. Despite the threat from A(t),
the honest network may add enough blocks to H(t) for these transactions to be
accepted.

We simulated this attack on a network with 100 equal miners, a delay of 2
seconds between each two, and a creation rate of 1 block per second. Figure 1
depicts the (fraction of) computational power needed by an attacker as a function
of the increase in waiting time it aims to induce. The payees are assumed to use
the policy induced by (4), with q = 0.2, and DS at most 1000 · val.



4 Transaction Selection under Inclusive Protocols

Up until now, we have not considered the effect of the Inclusive protocol on
how participants choose the transactions they will include in their blocks. In
fact, these choices are quite important: If all nodes choose the same subset of
transactions for inclusion in their blocks, any two blocks that are created in
parallel are likely to have many collisions, and throughput will not be high.

In this section we model transaction selection as a game, and show that nodes
are actually incentivized to avoid collisions. They choose transactions with high
fees, but will also compromise for lower fees with transactions that will have
fewer collisions.

4.1 The Game Model

We model the process of embedding transactions in blocks as an infinite-horizon
extensive form game, with N players (the miners), with imperfect information,
i.e., players may be only partially aware of other players’ moves (as they do not
immediately see all the blocks that have been created; this is the main non-trivial
aspect of the game). The game develops at discrete time steps t = (1, 2, ...), with
the gap between consecutive steps denoted ∆ (where ∆ is small).

We denote a transaction by wi (or simply w) and ignore any property apart
from its fee, which is assumed to fall into one of n discrete values, v1 > v2 > . . . >
vn > 0 (fees in Bitcoin, for example, are specified in whole units of Satoshis).
We write v(w) to denote w’s fee.

At every time step “nature” adds the same transactions simultaneously to
all players’ memory buffers (also known as memory pools). The number of new
transactions is an independent random variable with mean η∆, for some η > 0.
The fee of each new transaction is vl with probability rl, for some probability
vector r. If the size of the memory buffer of some player exceeds its limit L >
0, the transactions with lowest fees are dropped. Effectively, this means that
nature’s action space at every time step is finite, and can be mapped into [n]L.
Nature additionally chooses a (possibly empty) subset of players which will create
a block at this time step. The probability that at a certain step player i will create
a block is λi∆, with

∑N
i=1 λi = λ being the network’s block creation rate.

Player i observes only a partial signal of the actions of nature. He sees all
new transactions,10 and whether or not he was chosen to create a block. If so,
he chooses a subset of his memory buffer of size at most b, where b is a positive
integer constant representing the number of transactions per block. The chosen
transactions are deleted from i’s action space immediately, and from player j’s
action space after t+ di,j time steps, for some N ×N integer matrix (di,j)

N
i,j=1

(effectively deleting them from i and j’s memory buffers). This simulates the
delay in block propagation.

10 This assumption approximates well the situation in the real Bitcoin network, in
which transactions propagate quickly relative to blocks.



We are particularly interested in the case where the incoming rate of trans-
actions exceeds the rate at which they are accepted into blocks (without this
assumption, there is no scalability problem, and block sizes can be decreased).

A player may choose to use mixed strategies, namely, to select a distribution
over the subsets of size b from his buffer. Instead of using distributions over a
possibly exponential number of such subsets, it is more convenient to assign a
probability (between 0 and 1) to every individual transaction in the buffer, such
that the probabilities sum up to b. This scheme can be translated to probabilities
over subsets (we show this in Appendix B). We adopt the latter approach, for
its simplicity.

The Payoff Function Denote by T (B) the set of transactions which block
B was the first to contain, according to the order on blocks induced by Al-
gorithm 1’s run, denoted “≺”.11 Then B’s creator is awarded a fraction of∑

w∈T (B) v(w), as defined by γ(c(B)).
Finally, as is usually customary in infinite horizon games, a discount factor

0 < β < 1 is applied to all rewards, such that if a player has created blocks
B1, B2, ... at time steps t1, t2, ..., his reward from the game is

∑
j β

tj · γ (c(Bj)) ·∑
w∈T (Bj)

v(w).

4.2 Rationality in the Inclusive-F Game

The solution concept that best matches our scenario (in which players have par-
tial information about the recent actions of others) is the sequential equilibrium
which was developed by Kreps and Wilson [9]. This concept explicitly considers
the beliefs of players about the history and current state of the game. Intu-
itively, the sequential equilibrium concept ensures that a single player does not
expect to benefit from deviating (given these beliefs). Threats are additionally
“credible” and behaviors are temporally consistent (this is similar to sub-game
perfection). Finally, players’ beliefs about the state of the game are required to
be “consistent”.

We extend the result in [5] to the infinite horizon setting and show the exis-
tence, for all ϵ > 0, of an ϵ-perfect sequential equilibrium in our game (in which
players who deviate may gain, but no more than ϵ).

Lemma 5. For every ϵ > 0 there is an ϵ-perfect sequential equilibrium in the
Inclusive-F game.

11 To make this formal some work is needed: Let G(t) be the block DAG which consists
of all blocks created up to time t. We require that the underlying chain selection
rule F break ties between equally weighted leaves, in some predetermined perhaps
arbitrary way. Denote by Bt the leaf of the main chain F (G(t)). Assume F converges,
in the sense that a block in the main chain becomes less likely to be replaced, as time
grows: B ∈ F (G(t)) =⇒ lim

s→∞
Pr(B /∈ F (G(s))) = 0 (longest-chain and GHOST, for

instance, satisfy this property). We can thus speak of the eventual- or limit-order “≺”
on all blocks in the history of the game, defined by A ≺ A′ if ∃t0,∀t > t0 : A ≺Bt A′

(see the discussion succeeding Algorithm 1 for the definition of ≺Bt).



We prove this in Appendix F.
Note that several equilibria may (and do) exist, and worse yet, while the proof

of existence is constructive, it requires the exploration of an exponentially large
state space (essentially enumerating all possible subsets of transactions that will
enter the buffer in the future). We therefore desire an efficient algorithm that
will preform well in practice.

4.3 Myopic Strategies

We restrict the discussion in this subsection to a simplified version of the game,
namely, the single shot game. In this setup, when a player chooses transactions
for his current block, he disregards the effect this choice may have on which
transactions will be available for his next block. In addition, we assume all players
have identical buffers of transactions to choose from. Finally, we assume that a
block’s position within the block DAG does not depend on its creator’s identity.

This simplified model can be seen as a good approximation to an adequately
distributed network, in which individual players hold a small fraction of the total
computational power. A small player does not create blocks often, and thus his
current block has very little effect on his future rewards.

A Myopic Equilibrium For any block B let pconf(B) denote the set of blocks
which precede B in the order “≺” but are not reachable from it. Assume that
all players include transaction w in their block (if the block is indeed created)
with a marginal probability pw; then B’s expected reward from selecting w is
w · (1− pw)

|pconf(B)| · E[γ(c(B)) | |pconf(B)|]. We define,

f(pw) :=
∞∑
l=0

Pr(|pconf(B)| = l) · (1− pw)
l · E[γ(c(B)) | l].

One could verify that w · f(pw) is the player’s expected reward from embedding
w in B. Note that f is strictly decreasing in pw, and so its inverse f−1 exists.

Theorem 6. Suppose the memory buffer consists of kl transactions with fee
vl (1 ≤ l ≤ n). Denote the individual transactions by w1, . . . , wm, which are
sorted in descending order of their fees. Denote the index of v(wi) by l(wi). The
marginal probability pi :=

ql(wi)

kl(wi)
(1 ≤ i ≤ m) defines a symmetric equilibrium in

the single-shot inclusive-F game, where:

– ql =

{
kl ·min

(
f−1

(
ckmax

vl

)
, 1
)

1 ≤ l ≤ kmax

0 kmax < l ≤ n

– ∀ 1 ≤ l ≤ n: Gl(z) :=
∑l

h=1 kh ·min
(
f−1

(
z
vh

)
, 1
)

− b

– kmax := max{k ≤ n | ∀l ≤ k : Gl (vl) ≤ 0}
– ckmax is the root of Gkmax .

12

12 Note that kmax ≥ b, and that the existence of a root for Gkmax follows from the fact
that f ’s domain is [0, 1] hence this is also f−1’s image.



The proof is deferred to C. In Sect. 5 we show that this strategy performs
well, in terms of throughput and utility, despite the simplifying assumptions
used to derive it.

Safety Level As the players’ behavior is unknown and can take different courses,
one may be interested in the player’s safety level, namely, the minimal utility he
can guarantee himself. In the worst case for the player, the rest of the players
choose a strategy which minimizes his utility, and the safety level is his best
response to such a scenario.

Formally, player i’s safety level is the solution to the zero-sum game, where i
is the max-player while the rest of the network acts as his united adversary min-
player. The following theorem provides the player with a marginal probability
over his memory buffer, which serves as his maxmin strategy for the single-shot
game at time t.

Theorem 7. Denote player i’s memory buffer by w1, . . . , wm (sorted in de-
scending order of their fees) at a time in which it was able to create a block.
Denote δ := 2 · maxj{di,j} · (λ − λi), and for all q ∈ [0, 1]

m
define f(q) :=∑m

k=1 qk ·
(
wke

−δ
∑⌈ k

b ⌉−1

l=0
δl

l!

)
. Let q∗ be the solution of the next linear program:

max f(q) s.t. ∀k < m : qkwk ≥ qk+1wk+1 ; ∀k : 0 ≤ qk ≤ 1 ;
∑m

k=1 qk = b.
Then i’s utility from q∗ is at least f(q∗), regardless of the strategy profile of the
other players.

The idea behind the proof is to construct a game in which player i chooses
transactions for his blocks, while the rest attempt to choose the very same trans-
actions. In the worst case scenario for the player, his rivals correlate their blocks’
contents so as to maximize collisions with i’s blocks. Another worst case assump-
tion is that the delay between the players and i is maximal. Refer to Appendix D
for a formal construction and proof of the theorem.

4.4 An Optimal Strategy

The performance of any solution of the game, including those considered thus far,
should be compared to the optimal setup. If players would play cooperatively,
so as to try and maximize the system’s performance, then all blocks would
contain unique transactions, with the top most fees available. Formally, if n
blocks were created by the network during some long time period T , then the
system’s hypothetical optimal performance, OPT (T ), is defined as the sum of
the top n · b transactions created within T (this is not necessarily feasible, as
high transactions may not be available to early blocks).

Recall that transactions arrive at a rate of η. Their values are drawn according
to some probability vector r, and we denote by R the corresponding CDF. The
rate at which transactions are embedded in the DAG is denoted λout := b · λ (it
is the hypothetical optimal throughput).

We define a threshold below which transactions are totally ignored by the
players. Without loss of generality, we can assume that there’s a single jthresh



for which R(vjthresh
) = 1 − λout

η ; indeed, one could always increase the gran-

ularity of the discretization v1 > ... > vn (along with increasing n) so as
to sufficiently smooth the CDF function R.13 This threshold defines a cutoff,
θ := {j : vj > vthresh}. We claim that if players choose transactions above
this cutoff, uniformly, then the resulting social welfare, which is the throughput
weighed according to fees, would coincide with OPT (T ), as T goes to infinity.
We denote the described strategy by UCO (Uniform above CutOff), and by
UCO(T ) the total weighed throughput achieved by applying UCO up to T .

Proposition 8. Assume nodes have an unlimited memory buffer. Let T be some
time window, and denote by n(T ) the number of blocks that were created by
that time. Then, lim

T→∞
1

n(T ) · E[OPT (T )] = lim
T→∞

1
n(T ) · E[UCO(T )], where the

expectation is taken over all random events in the network and in the realization
of UCO.

The intuition behind the result is that choosing a cutoff as we have prescribed
implies that the incoming and outgoing rates of transactions to the buffer are
equal. Thus, results from queueing theory show that the expected size of the
buffer is infinite, and miners always have enough transactions above the cutoff
to include in blocks. In particular, for large enough memory buffers, there are
effectively no collisions between different blocks, and the transactions in blocks
are unique. This surprising result is achieved at a cost: transactions have long
expected waiting times for their authorization. The proof of the proposition
appears in Appendix E.

5 Implications of Inclusive Protocols

5.1 Throughput

The throughput of the system, when the Inclusive protocol is implemented,
depends on the behavior of the players. We demonstrate Inclusive’s ability to
achieve significantly higher results by checking the throughput when the players
act according to the myopic strategy defined above.

We simulated a network with 100 identical players. The distance between
each pair of players was a constant d = 1 second. We examined different block
creation rates λ varying from 0 to 10 blocks per second. Block sizes were set to
b = 50 transactions per block. The transaction arrival rate was 65 transactions
per second, and their fees drawn uniformly from [0,1]. In each simulation we
compared the performance of the myopic strategy to the non-inclusive outcome.
We compare the resulting throughput to the optimal achievable rate, which is
achieved in centralized networks with no delays. Figure 2 depicts the results,
showing substantial gains over the non-inclusive protocol.

13 In reality, the granularity cannot be finer than 10−8, which is the precision limit in
Bitcoin, we ignore though this technicality.
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5.2 Fairness

While a miner with computational power qλ owns a fraction q of blocks in the
block DAG (in expectation), highly connected miners will have more of their
blocks in the main chain compared to poorly connected ones. This phenomenon
lowers the profitability of weak players that are unable to match the return on in-
vestment enjoyed by larger ones, and slowly pushes Bitcoin towards an increased
concentration of mining power. Given two miners with equal connectivity, but
differing hash rates, the larger miner of the two also enjoys an advantage as he
immediately begins to extend his own block using more computational power
than his weaker opponent.

Inclusive protocols significantly mitigate this effect. Off-chain blocks reward
their owners with some fees, so weak or poorly connected miners, who have a
higher proportion of off-chain blocks, suffer fewer losses.

Consider, for instance, a network with two strong miners each owning a
fraction 0.45 of the total computational power, and a weak miner owning 0.1. We
simulated this scenario, and examined the revenue of the small miner. The results
are given as a fraction of the social welfare, in Fig. 3, and show a significant
mitigation of the nonlinearity phenomenon.

6 Related Work

The Bitcoin protocol was published by Satoshi Nakamoto in a white paper in
2008 [10]. The security analysis in the paper was later improved in [12]. The
propagation of large blocks in the network was first studied in [6], where empirical
measurements and analysis have shown that larger blocks conflict more often,
and some economic implications such as the desire of miners to create smaller
blocks was considered. Additional analysis of phenomena related to larger block



λ

0 2 4 6 8 10

F
ra

ct
io

n 
of

 o
bt

ai
ne

d 
fe

es

0

0.02

0.04

0.06

0.08

0.1
Inclusive
Non-inclusive
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sizes was given in [13]. The incentives of miners to propagate transactions was
studied in [2]. A recent work by Eyal and Sirer has shown that large miners may
choose not to follow the exact protocol and may delay the propagation of their
own blocks in order to increase their revenue [7]. These effects still persist in
our own version of the protocol, and so we assume that honest nodes follow the
protocol without such manipulations.14

Additional techniques to mitigate the effects of an increased number of trans-
actions on the network include the proposal for micro-transactions channels (see,
e.g., [4]). These channels effectively allow two transacting parties to open a
micro-payment channel by freezing some sum of money and transmitting it in
small quantities, effectively updating a transaction that includes the total trans-
fer thus far. The aggregating transaction is committed to the block chain after
some time has passed. Micro-transaction channels are not as useful in second
generation protocols, as they are not suitable to updates that cannot be easily
aggregated. In addition, the costs of locking money in advance and the limita-
tion to channels between pairs of nodes further restrict the use of this approach.
Other discussions in the Bitcoin community include the use of invertible Bloom
filters to reduce the amount of information transmitted between nodes [1].

As our work considers structural changes to the block chain structure, it is
also worthwhile to mention proposals such as Side Chains [3] that are currently
being discussed in the Bitcoin community.

7 Conclusion

We presented the Inclusive protocol that integrates the contents of off-chain
blocks into the ledger. Our modification results in incentives for behavior changes

14 Successful manipulations require strong attackers that are either highly connected,
or have massive amounts of computational power.



by the nodes that lead to an increased throughput, and a better payoff for weak
miners. Our plans for future work include additional analysis of transaction
authorization policies and waiting times as well as evaluations of the protocol
under selfish mining.
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Transactions A bitcoin transaction is essentially cryptographically signed mes-
sage which requests the transfer of a specified amount of bitcoins to some des-
tination addresses. Transactions transfer money from “inputs” to “outputs”,
where inputs point to previous unspent outputs. A transaction is confirmed by
marking all its inputs as spent and all its output as unspent. If some input is in-
valid or spent already it cannot be confirmed. Transactions that spend the same
outputs are considered conflicting – essentially, they are trying to move the same
funds to two different locations. Transactions are considered approved once they
are included in the block chain (usually, after several blocks have been built on
top – see below). Additional special transactions called “coinbase transactions”
create money and award it to the block creator, and also award fees to the block
creator from each transaction. For simplicity, we focus in this paper on some
time in the future in which the money creation rate has decayed to nearly 0,
and do not discuss these minting events (Bitcoin’s money creation rate halves
approximately every 4 years).

Blocks and The Block Chain A block is a collection of transactions which
additionally contains a hash of the previous block it extends (usually the most
recent block known to the node). These references, which with extremely high
probability are unique identifiers, define a path to the first block which was
created when the system was launched (the genesis block). Together, the block
chain ending at each block defines a history of transfers that must be consistent.

A block is thus valid only if it contains transactions that are all legal, i.e.,
with valid signatures matching the owner according to the history encoded in
the preceding chain. In addition, blocks are currently limited in size. The block
creator is awarded a fee for every transaction included in the block. The fee itself
is specified within the transaction and selected by its creator. The block creator
is free to select which transactions to include in the block, and in particular,
may do so based on the fees they offer.

Once a block is created, it is forwarded among nodes in the network. A node
that receives a new block verifies it and if it extends its chain, also adds it to to
its own copy of the block chain.

The Block Tree and The Main Chain With each block pointing to a single
parent, the blocks form a tree from which each node must pick the current chain
(or history) that it accepts, i.e., a leaf in the tree along with the chain leading
to it. As mentioned before, Bitcoin’s protocol specifies that the Longest Chain
should be picked (or in case of a tie, the one that was received first). This is the
“Longest Chain” rule, and its output is the “main chain”.

A vital property of the protocol is that forks do not last for a long time,
thanks to the Longest Chain rule and to the randomness in blocks creation.
Even if different nodes in the network adopted different versions, one will quite
likely grow a block ahead of the other, and will be adopted by all nodes.

Forks in the tree can occur also due to a malicious deviation of a node from
the protocol. An attacker node may choose not to extend the main (longest)
chain, but rather to build an alternative one, in an attempt to override the main
chain and its content. Such an attempt succeeds if the new chain is longer than



the one built by the network, but this is difficult to achieve: the creation of each
block require intense computational effort, and it is unlikely that an attacker will
overtake the network. See [10, 12] for more details. Overriding the main chain in
this way can be used to reverse transactions (as the contents of the overridden
chain are discarded). This form of attack is known as a double-spend attack,
as it allows the attacker to reuse its money. An attacker that owns over 50%
of the computational resources in the network can create blocks fast enough to
overtake the chain at any point. This form of attack is called the 50% attack.

Throughput The block creation rate, combined with the restriction on the
block size, imposes a trivial limit on Bitcoin’s throughput: The system cannot
process more than K · b0 · λ transactions per second, where K is the average
number of transactions per KB (currently ≈ 2). The actual throughput is given
by the average rate of transactions added to the main chain (or K ·b0 ·β, where β
is the growth rate of the main chain); indeed, only main chain blocks contribute
confirmed transactions to the history log. In order to increase the throughput
one could consider increasing the protocol parameters λ or b0, or even both.

B Mixed Strategies as Marginal Distributions

In what follows we show that for any set of size m, choosing a probability vector
over its subsets of size b is equivalent to choosing a number between 0 and 1 for
every single element in it (also called its marginal probability or distribution),
such that sum of these numbers is b.

Definition 3. For p ∈ ∆(mb ) a distribution over the subsets of size b, we define
the induced marginal distribution of p as q = q (p) such that qi =

∑
S∈(mb ),i∈S ps.

Note that q ∈ [0, 1]
m

and
∑m

i=1 qi = b.

Lemma 9. For every b,m ∈ N such that b ≥ 1 and m ≥ b. Let q ∈ [0, 1]
m

such

that
∑m

i=1 qi = b. Then, there exists p ∈ ∆(mb ) such that q = q (p). That is, q is
the marginal distribution of p.

Proof. We will prove by complete induction on b+m.

– When b = 1, q ∈ ∆m, simply set p{i} = qi.

– When m = b, it must hold that q1 = · · · = qb = 1, hence set p(1,...,b) = 1.

– When b > 1 and b + 1 ≤ m < 2b, let b′ = m − b. Note that 1 ≤ b′ < b.
Let q̃ ∈ [0, 1]

m
such that q̃i = 1 − qi. Now,

∑m
i=1 q̃i =

∑m
i=1 (1− qi) =

m −
∑m

i=1 qi = m − b = b′. m + b′ < m + b, hence from the induction

hypothesis there exists p̃ ∈ ∆(mb′) such that q (p̃) = q̃. Let p ∈ ∆(mb ) such



that pS = p̃N\S . Now,

q (p)i =
∑

S∈(mb ),i∈S ps

=
∑

S∈(mb ),i∈S p̃N\S

=
∑

S∈(mb′),i/∈S p̃S

=
∑

S∈(mb′)
p̃S −

∑
S∈(mb′),i∈S p̃S

= 1− q (p̃)i
= 1− q̃i = qi

– When b > 1 and m ≥ 2b, we can assume, without lost of generality, that
q1 ≥ q2 ≥ · · · ≥ qm−1 ≥ qm. Note that qm < 1. Let q̃ ∈ ℜm−1 such that
q̃i = qi−qm

1−qm
if 1 ≤ i ≤ b − 1 and q̃i = qi

1−qm
if b ≤ i ≤ m − 1. For every

i ≤ m− 1 it holds that q̃i ≥ 0, in addition, we have that:∑m−1
i=1 q̃i =

∑b−1
i=1

qi−qm
1−qm

+
∑m−1

i=b
qi

1−qm

=
∑m−1

i=1 qi
1−qm

− (b− 1) qm
1−qm

= b−qm−(b−1)qm
1−qm

= b 1−qm
1−qm

= b

For 1 ≤ i ≤ b− 1, qi ≤ 1 hence q̃i ≤ 1. For i ≥ b it holds that:

q̃i ≤ q̃b =
qb

1−qm
= 1

b
bqb

1−qm
≤ 1

b

∑b
i=1 qi

1−qm

≤
∑b

i=1 qi
b−bqm

=
∑b

i=1 qi∑m
i=1 qi−bqm

=
∑b

i=1 qi∑b
i=1 qi+

∑m
i=b+1 qi−bqm

≤
∑b

i=1 qi∑b
i=1 qi+

∑2b
i=b+1 qi−bqm

=
∑b

i=1 qi∑b
i=1 qi+

∑2b
i=b+1(qi−qm)

≤
∑b

i=1 qi∑b
i=1 qi

= 1

hence for every 1 ≤ i ≤ m − 1: q̃i ≤ 1. m − 1 + b < m + b, therefore from

the induction hypothesis there exists p̃ ∈ ∆(m−1
b ) such that q (p̃) = q̃. Let

p ∈ ∆(mb ) such that

pS =


qm S = {1, 2, . . . , b− 1,m}
(1− qm) p̃S m /∈ S

0 Otherwise

Note that indeed p ∈ ∆(mb ). For 1 ≤ i ≤ b− 1

q (p)i =
∑

S∈(mb ),i∈S ps

=
∑

S∈(mb ),i∈S,m/∈S ps + p{1,2,...,b−1,m}

=
∑

S∈(m−1
b ),i∈S pS + qm

= (1− qm)
∑

S∈(m−1
b ),i∈S p̃S + qm

= (1− qm) q̃i + qm = qi



For b ≤ i ≤ m− 1

q (p)i =
∑

S∈(mb ),i∈S ps

=
∑

S∈(mb ),i∈S,m/∈S ps

=
∑

S∈(m−1
b ),i∈S pS

= (1− qm)
∑

S∈(m−1
b ),i∈S p̃S

= (1− qm) q̃i = qi

Finally, q (p)m =
∑

S∈(mb ),m∈S ps = p{1,2,...,b−1,m} = qm.

⊓⊔

Corollary 10. For every b,m ∈ N such that b ≥ 1 and m ≥ b. Let q ∈ [0, 1]
m

such that
∑m

i=1 qi = b. Then, there exists p ∈ ∆(mb ) such that q = q (p), and
there are at most m sets with positive probability.

C Proof of Theorem 6

Theorem 6. Suppose the memory buffer consists of kl transactions with fee
vl (1 ≤ l ≤ n). Denote the individual transactions by w1, . . . , wm, which are
sorted in descending order of their fees. Denote the index of v(wi) by l(wi). The
marginal probability pi :=

ql(wi)

kl(wi)
(1 ≤ i ≤ m) defines a symmetric equilibrium in

the single-shot inclusive-F game, where:

– ql =

{
kl ·min

(
f−1

(
ckmax

vl

)
, 1
)

1 ≤ l ≤ kmax

0 kmax < l ≤ n

– ∀ 1 ≤ l ≤ n: Gl(z) :=
∑l

h=1 kh ·min
(
f−1

(
z
vh

)
, 1
)

− b

– kmax := max{k ≤ n | ∀l ≤ k : Gl (vl) ≤ 0}
– ckmax is the root of Gkmax .

Proof. Recall that for f defined in the discussion preceding Theorem 6, w ·f(pw)
is the player’s expected reward from embedding transaction w in its block B,
given that the rest of the players embed it in their (conflicting to B) blocks with
probability pw. Consequently, in order to prove the Nash property it is sufficient
to show that for any i and j:

(0 < pi ∧ pj < 1) =⇒ wi · f (pi) ≥ wj · f (pj) . (5)

Indeed, any strategy different from p must transfer weight from some wi with
0 < pi to some wj with pj < 1. Inequality (5) therefore guarantees that no such
deviation is beneficial to the player, proving p is a Nash equilibrium.

Let i and j be as in (5). First, l(i) ≤ kmax, therefore

pi =
ql(i)

kl(i)
≤ f−1

(
ckmax

vl(i)

)
=⇒ vl(i)f(pi) ≥ ckmax =⇒ wif(pi) ≥ ckmax .



If l(j) ≤ kmax the same expression holds for j, with an equality, as pj < 1.
This proves LHS ≥ RHS for this case.

On the other hand, if l(j) > kmax then pj = 0, and vkmax+1 ≥ wj = wj ·
f(0) = RHS. As LHS ≥ ckmax it is sufficient to prove that ckmax ≥ vkmax+1.
Assume by negation the opposite holds. We then get,

Gkmax+1(vkmax+1) =

kmax+1∑
h=1

kh(t)min

(
f−1

(
vkmax+1

vh

)
, 1

)
− b =

kmax∑
h=1

kh(t)min

(
f−1

(
vkmax+1

vh

)
, 1

)
− b ≤

kmax∑
h=1

kh(t)min

(
f−1

(
ckmax

vh

)
, 1

)
− b =

Gkmax
(ckmax

) = 0,

which implies Gkmax+1(vkmax+1) ≤ 0. This contradicts the choice of kmax.
We conclude that also when j > kmax, LHS ≥ RHS.

To complete the proof we show that p describes a legal marginal distribution:
That 0 ≤ pi ≤ 1 is immediate from pi’s definition. In addition, as ckmax

is the
root of Gkmax ,

n∑
i=1

pi − b =

kmax∑
h=1

kh(t)qh − b =

kmax∑
h=1

min

(
f−1

(
ckmax

vh

)
, 1

)
− b = 0.

⊓⊔

D Proof of Theorem 7

Theorem 7. Denote player i’s memory buffer by w1, . . . , wm (sorted in de-
scending order of their fees) at a time in which it was able to create a block.
Denote δ := 2 · maxj{di,j} · (λ − λi), and for all q ∈ [0, 1]

m
define f(q) :=∑m

k=1 qk ·
(
wke

−δ
∑⌈ k

b ⌉−1

l=0
δl

l!

)
. Let q∗ be the solution of the next linear program:

max f(q) s.t. ∀k < m : qkwk ≥ qk+1wk+1 ; ∀k : 0 ≤ qk ≤ 1 ;
∑m

k=1 qk = b.
Then i’s utility from q∗ is at least f(q∗), regardless of the strategy profile of the
other players.

We precede the proof with several lemmas. Note that for a given block of
the player, the blocks which conflict it are created within a time frame of at
most 2 ·maxj{di,j}, and thus δ is the rate at which these blocks are created. We
analyze the worst case scenario, and thus assume that the player’s blocks are
the latest, according to “≺”, among the blocks which they conflict. Nevertheless,
we do not take into account the penalty function γ, as it does not depend on
players’ strategies (according to our game model, Subsection 4.1).



Let σ ∈ Sm be a permutation on the set {1, . . . ,m}. We define σ−1 as the
inverse permutation of σ, that is for i ∈ {1, . . . ,m}: σ−1 (σ (i)) = σ

(
σ−1 (i)

)
= i.

Let G be a zero-sum game defined by the matrix A ∈ ℜ(
m
b )×m!, where the utility

of the max player when she plays S ∈
(
m
b

)
and the min player plays σ is given

by: AS,σ =
∑

i∈S wie
−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j! .

Lemma 11. Let p ∈ ∆(mb ) be mixed strategy of the max player in G and let
q = q (p). Let σ ∈ Sm be a best response of the min player to p, then it holds
that for every k ≤ m−1

b : qσ−1(bk)wσ−1(bk) ≥ qσ−1(bk+1)wσ−1(bk+1).

Proof. Let σ ∈ Sm such that qσ−1(bk)wσ−1(bk) < qσ−1(bk+1)wσ−1(bk+1) for some

k ≤ m−1
b , we shall prove that there exists σ′ ∈ Sm such that σ′ is a better

response to p than σ. Namely, σ′ (i) =


bk i = σ−1 (bk + 1)

bk + 1 i = σ−1 (bk)

σ (i) Otherwise

.

Now, denote by G (p, σ) the expected utility of the max player under the
mixed strategy p and the permutation σ,

G (p, σ) =
∑

S∈(mb )
pi,r

(∑
i∈S

(
wie

−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

))
=
∑m

i=1 qiwie
−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

=
∑m

i=1 qσ−1(i)wσ−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

=
∑

i ̸=bk,bk+1 qσ−1(i)wσ−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

+ qσ−1(bk)wσ−1(bk)e
−δ
∑k−1

j=0
δj

j! + qσ−1(bk+1)wσ−1(bk+1)e
−δ
∑k

j=0
δj

j!

=
∑

i ̸=bk,bk+1 qσ−1(i)wσ−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

+e−δ
∑k−1

j=0
δj

j!

(
qσ−1(bk)wσ−1(bk) + qσ−1(bk+1)wσ−1(bk+1)

)
+ qσ−1(bk+1)wσ−1(bk+1)e

−δ δk

k!

>
∑

i ̸=bk,bk+1 qσ−1(i)wσ−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

+e−δ
∑k−1

j=0
δj

j!

(
qσ−1(bk)wσ−1(bk) + qσ−1(bk+1)wσ−1(bk+1)

)
+ qσ−1(bk)wσ−1(bk)e

−δ δk

k!

=
∑

i ̸=bk,bk+1 qσ′−1(i)wσ′−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

+qσ′−1(bk)wσ′−1(bk)e
−δ
∑k−1

j=0
δj

j! + qσ′−1(bk+1)wσ′−1(bk+1)e
−δ
∑k

j=0
δj

j!

=
∑m

i=1 qiwie
−δ
∑⌈

σ′(i)
b

⌉
−1

j=0
δj

j!

=
∑

S∈(mv )
pi,r

(∑
i∈S

(
wie

−δ
∑⌈

σ′(i)
b

⌉
−1

j=0
δj

j!

))
= G (p, σ′)

That is, G (p, σ) > G (p, σ′) and therefore σ′ is a better response to p than σ. ⊓⊔

Lemma 12. Let p ∈ ∆(mb ) be a mixed strategy of the max player in G and let
q = q (p). Let σ, σ′ ∈ Sm such that for some 1 ≤ k ≤ m

b , and 0 ≤ l < r < b it



holds that σ′ (i) =


bk − l i = σ−1 (bk − r)

bk − r i = σ−1 (bk − l)

σ (i) Otherwise

,

then G (p, σ) = G (p, σ′).

Proof. Let σ, σ′ ∈ Sm as stated. Now,

G (p, σ) =
∑

S∈(mb )
pi,r

(∑
i∈S

(
wie

−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

))
=
∑m

i=1 qiwie
−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

=
∑m

i=1 qσ−1(i)wσ−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

=
∑

i ̸=bk−r,bk−l qσ−1(i)wσ−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

+ qσ−1(bk−r)wσ−1(bk−r)e
−δ
∑⌈ bk−r

b ⌉−1

j=0
δj

j! + qσ−1(bk−l)wσ−1(bk−l)e
−δ
∑⌈ bk−l

b ⌉−1

j=0
δj

j!

=
∑

i ̸=bk−r,bk−l qσ−1(i)wσ−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

+qσ−1(bk−r)wσ−1(bk−r)e
−δ
∑⌈ bk−l

b ⌉−1

j=0
δj

j! + qσ−1(bk−l)wσ−1(bk−l)e
−δ
∑⌈ bk−r

b ⌉−1

j=0
δj

j!

=
∑

i ̸=bk−r,bk−l qσ′−1(i)wσ′−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

+qσ′−1(bk−l)wσ′−1(bk−l)e
−δ
∑⌈ bk−l

b ⌉−1

j=0
δj

j! + qσ′−1(bk−r)wσ′−1(bk−r)e
−δ
∑⌈ bk−r

b ⌉−1

j=0

=
∑m

i=1 qσ′−1(i)wσ′−1(i)e
−δ
∑⌈ i

b⌉−1

j=0
δj

j!

=
∑m

i=1 qiwie
−δ
∑⌈

σ′(i)
b

⌉
−1

j=0
δj

j!

= G (p, σ′)

⊓⊔

Lemma 13. Let p ∈ ∆(mb ) be a mixed strategy of the max player in G and let
q = q (p). There exists σ ∈ Sm, a best response of the min player to p, such that
for every 1 ≤ i < n: qσ−1(i)wσ−1(i) ≥ qσ−1(i+1)wσ−1(i+1).

Proof. Let σ be a best response of the min player to p. From the previous lemma
we can assume without generality that for every 1 ≤ k ≤ m

b , and 0 ≤ l < r < b
– qσ−1(bk−r)wσ−1(bk−r) ≥ qσ−1(bk−l)wσ−1(bk−l), and from lemma 12 for every

k ≤ n−1
b – qσ′−1(bk)wσ′−1(bk) ≥ qσ−1(bk+1)wσ′−1(bk+1), hence for every 1 ≤ i < n

– qσ′(i)wσ′−1(i) ≥ qσ′−1(i+1)wσ−1(i+1). ⊓⊔

Lemma 14. Let p ∈ ∆(mb ) and let q = q (p) such that qkwk < qk+1wk+1 for

some k ∈ {1 . . . n− 1}. Then there exists p′ ∈ ∆(mb ) such that minτ G (p′, τ) >
minτ G (p, τ).

Proof. Since qkwk < qk+1wk+1 and wk ≥ wk+1 it follows that qk < qk+1, thus
there must be some S ∈

(
m
b

)
such that k + 1 ∈ S, k /∈ S and ps > 0, let



S′ = {S\ {k + 1}}∪{k}. Let ε ∈ (0, pS) such that (qk + ε)wk < (qk+1 − ε)wk+1

and let

p′T =


pT + ε T = S′

pT − ε T = S

pT Otherwise

Note that q′k = qk + ε, q′k+1 = qk+1 − ε and for i ̸= k, k + 1 it holds that q′i = qi
where q′ = q (p′). Now, let σ be the response of the min player to p′, such that for
every 1 ≤ i < n: qσ−1(i)wσ−1(i) ≥ qσ−1(i+1)wσ−1(i+1), such exists due to lemma
13, hence σ (k + 1) < σ (k).

G (p′, σ) =
∑

S∈(mb )
p′i,r

(∑
i∈S

(
wie

−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

))
=
∑m

i=1 q
′
iwie

−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

=
∑

i ̸=k,k+1 q
′
iwie

−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j! + q′kwke
−δ
∑⌈σ(k)

b ⌉−1

j=0
δj

j! + q′k+1wk+1e
−δ
∑⌈σ(k+1)

b ⌉−1

j=0
δj

j!

=
∑

i ̸=k,k+1 q
′
iwie

−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

+
(
q′kwke

−δ + q′k+1wk+1

)
e−δ

∑⌈σ(k+1)
b ⌉−1

j=0
δj

j! + q′kwke
−δ
∑⌈σ(k)

b ⌉−1

j=⌈σ(k+1)
b ⌉

δj

j!

=
∑

i ̸=k,k+1 qiwie
−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

+(qkwk + qk+1wk+1 + ε (wk − wk+1)) e
−δ
∑⌈σ(k+1)

b ⌉−1

j=0
δj

j! + (qk + ε)wke
−δ
∑⌈σ(k)

b ⌉−1

j=⌈σ(k+1)
b ⌉

δj

j!

>
∑

i ̸=k,k+1 qiwie
−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j!

+(qkwk + qk+1wk+1) e
−δ
∑⌈σ(k+1)

b ⌉−1

j=0
δj

j! + qkwke
−δ
∑⌈σ(k)

b ⌉−1

j=⌈σ(k+1)
b ⌉

δj

j!

=
∑m

i=1 qiwie
−δ
∑⌈σ(i)

b ⌉−1

j=0
δj

j! = G (p, σ) ≥ minτ G (p, τ)

⊓⊔

Proof of Theorem 7. From Lemma 9 finding an optimal p ∈ ∆(mb ) is equivalent
to find a marginal distribution. From Lemma 14 there exists an optimal marginal
distribution q, such that qiwi ≥ qi+1wi+1 for every 1 ≤ i < n, and ∥q∥1 = b.
From lemma 13 a best response of the min player for such q is id (∀i id (i) = i).
The utility of the max player when she plays q and the min player plays id is∑m

i=1 qi ·
(
wie

−δ
∑⌈ i

b⌉−1

j=0
δj

j!

)
. Hence the optimal q could be founded using the

linear program described in the theorem, and p ∈ ∆(mb ) such that q (p) = q is
indeed the optimal strategy of the max player .

The main insight from Theorem 7 is that given the transactions buffer, the
safety-level strategy can be computed in polynomial time.

E Proof of Proposition 8

Proposition 8:
Assume nodes have an unlimited memory buffer. Let T be some time window,



and denote by n(T ) the number of blocks that were created by that time. Then,
lim

T→∞
1

n(T ) ·E[OPT (T )] = lim
T→∞

1
n(T ) ·E[UCO(T )], where the expectation is taken

over all random events in the network and in the realization of UCO.

Strictly speaking, the limits in the proposition exist almost surely (n(T ) is a
random variable), and it is in that sense that we prove the equality between
them. We divide the proof to several lemmas.

Lemma 15. As T −→ ∞, E[UCO(T )]
n(T ) −→ b · η

λout
·
∑

j∈θ rj · vj (a.s.).

Proof. Let xj,m (j = 1, ..., n) be the number of transactions with value vj avail-
able in the memory buffer of the node that created themth block, right before its
creation. We denote by pre(m) the index of the latest block which this node was
aware of at the time it created this block; we generally have 0 ≤ pre(m) < m.
For the genesis block, with index 0, we define pre(0) = 0, and for convenience
we assume that it is already known to all nodes and that it is empty.

Recall that according to UCO nodes choose transactions, uniformly, from
those whose fee lies in θ (see Subsection 4.4). Let xm :=

∑
j∈θ xj,m be the

number of transactions above the cutoff in the buffer of the mth block’s creator
(just before its creation), and let ym be the average of their fees: ym = 1

xm
·∑

j∈θ xj,m · vj (defined as 0 if xm = 0).
The history of transaction arrival and departure can be modeled as an M/M/1

queue, with arrival rate η · Pr({vj : j ∈ θ}) and service rate upper bounded
by λout (the probability here is taken according to R, so that ∀1 ≤ j ≤ n :
Pr({vj}) = rj). By the definition of θ we have that Pr({vj : j ∈ θ}) =
1 − R(vthresh) = λout

η . The service rate therefore is equal to the arrival rate,
hence the memory buffers of all players must eventually explode.

This implies that, as time grows, the number of collisions between blocks
becomes negligible (notice that the expected number of conflicting blocks is
bounded by D · λ, where D is the network’s delay diameter). In consequence,
the expected revenue from the mth block equals the expected average of trans-
action fees in the cutoff, within which they are chosen according to a uniform
distribution, namely, E [ym].

Claim 16. If there are b = 1 transactions per block, then E[ym|xm > 0] =
1

Pr(vj :j∈θ) ·
∑

j∈θ rj · vj.

Proof. Let sk,m denote the probability that k transactions, that lie within the
cutoff, were created between the pre(m)th block and the mth one, conditioned
on the event {xm > 0}. Put zj := rj/Pr({vj : j ∈ θ}). We need to prove that
E[ym|xm > 0] =

∑
j∈θ zj ·vj , and we do so by induction. y1 is the average of fees

in the first round, hence conditioned on {x1 > 0}, s0,1 = 0, and we have,

E[y1|x1 > 0] =
∞∑
k=1

sk,1 ·
∑

j∈θ E[xj,1 · vj | k]
k

=
∞∑
k=1

sk,1 ·
∑

j∈θ k · zj · vj
k

=

(1− s0,1) ·
∑
j∈θ

zj · vj =
∑
j∈θ

zj · vj .



Assume we proved the claim for any t ≤ m. We now prove it for t = m+ 1.
The buffer of the creator of the (m + 1) block consists of all transactions not
contained in block pre(m+ 1) or earlier. Therefore,

E [ym+1|xm+1 > 0] = E
[
E
[
ym+1

∣∣∣ (xj,pre(m+1)

)n
j=1

, xm+1 > 0
]]

= (6)

E

[ ∞∑
k=0

sk,m+1 · E
[
ym+1

∣∣∣ (xj,pre(m+1)

)n
j=1

, xm+1 > 0, k
]]

= (7)

E

[ ∞∑
k=0

sk,m+1 · E
[∑

j∈θ xj,m+1vj

xm+1

∣∣∣ (xj,pre(m+1)

)n
j=1

, xm+1 > 0, k

]]
=

E

[ ∞∑
k=0

sk,m+1 · E
[∑

j∈θ xj,m+1vj

xpre(m+1)−1+k

∣∣∣ (xj,pre(m+1)

)n
j=1

, xm+1 > 0, k

]]
= (8)

E

 ∞∑
k=0

sk,m+1 ·

∑
j∈θ E

[
xj,m+1

∣∣∣ (xj,pre(m+1)

)n
j=1

, xm+1 > 0, k
]
· vj

xpre(m+1) − 1 + k

 = (9)

E

 ∞∑
k=0

sk,m+1 ·

∑
j∈θ

(
xj,pre(m+1) −

xj,pre(m+1)

xpre(m+1)
+ zj · k

)
· vj

xpre(m+1) − 1 + k

 =

E

[ ∞∑
k=0

sk,m+1 ·
ypre(m+1) ·

(
xpre(m+1) − 1

)
+ k ·

∑
j∈θ zj · vj

xpre(m+1) − 1 + k

]
=

∞∑
k=0

sk,m+1 ·
E
[
ypre(m+1)

]
·
(
xpre(m+1) − 1

)
+ k ·

∑
j∈θ zj · vj

xpre(m+1) − 1 + k
=

Now, the induction hypothesis implies that E
[
ypre(m+1)|xpre(m+1) > 0

]
=
∑

j∈θ zj ·
vj . On the other hand, conditioned on {xpre(m+1) = 0}, the calculation of ym+1

is identical to that of y1, which equals
∑

j∈θ zj · vj as well. We can thus write

the latter instead of E
[
ypre(m+1)

]
, in the previous expression, and arrive at

∞∑
k=0

sk,m+1 ·
∑

j∈θ zj · vj ·
(
xpre(m+1) − 1

)
+ k ·

∑
j∈θ zj · vj

xpre(m+1) − 1 + k
=∑

j∈θ

zj · vj . (10)

The equalities in (6) and (7) stem from properties of conditional expectation.
In (8) we used the fact that k new transactions were added to the buffer between
the pre(m+1) and the (m+1) blocks, and the one embedded in the pre(m+1)
block was removed from it (as b = 1). Equality (9) uses the fact that, given the
state of the buffer

(
xj,pre(m+1)

)n
j=1

, the transaction for the next block is taken



from the jth queue with probability
xj,pre(m+1)

xT,pre(m+1)
, whereas zj ·k new ones are added

to it, in expectation. ⊓⊔

Proof (of Lemma 15, cont.). Continuing the proof of Lemma 15, the claim has
shown that E [ym|xm > 0] = 1

Pr(vj :j∈θ) ·
∑

j∈θ rj ·vj , and Pr({vj : j ∈ θ}) = λout

η ,

as mentioned above. As an implication of the explosion of the memory buffers,
Pr({xm > 0}) vanishes as m grows. In particular, E [ym|xm > 0] goes to E [ym]
as T grows (m is arbitrarily large when T is).

We conclude that when b = 1, the expected total weighed throughput up to
time T , under UCO, goes to the number of blocks (namely, the random variable
n(T )) times η

λout
·
∑

j∈θ rj · vj . The way to apply Claim 16 to the general case of
b > 1, is by thinking of every block creation as b successive creations of blocks
containing a single transaction each. Splitting one event of block creation to
b events changes nothing in the proof of the claim—it merely implies that for
some blocks, pre(m) equals m − 1 and no transactions were created between
these blocks. Note further that (6)-(10) apply to any general probability vector
(sk,m), and, in particular, to s0,m = 1, which amounts to the null time-interval
between splits of the same block.

In conclusion, the expected total weighed throughput goes to n(T ) · b · η
λout

·∑
j∈θ rj · vj . Dividing by n(T ) (which converges a.s., according to The Strong

Law Of Large Numbers) completes the proof of the lemma. ⊓⊔

We proceed to analyze OPT (T ). The following lemma completes the proof
of Proposition 8.

Lemma 17. As T −→ ∞, E[OPT (T )]
n(T ) −→ b · η

λout
·
∑

j∈θ rj · vj (a.s.)

Proof. Let Mj(T ) be the total number of transactions with fee vj , created up
to T , and denote M(T ) :=

∑n
j=1 Mj(T ). The optimal revenue is bounded from

above by the accumulated fees of the top n(T ) · b transactions, out of the total
M(T ).

Define jOPT (T ) := max
{
j :
∑

j′<j Mj′(T ) ≤ n(T ) · b
}
. By the Strong Law

of Large Numbers, Mj(T ) converges almost surely to rj ·η ·T and similarly n(T )
to λ · T = λout

b · T . Consequently, the condition inside jOPT (T ) is equivalent, at

its limit, to
∑

j′<j rj′ ≤
λout

η . Thus, jOPT −→ jthresh (a.s.), and we can assume

that
∑

j′<jOPT (T ) Mj′(T ) = n(T ) · b, as explained in Subsection 4.4.
The optimal revenue is upper bounded by the fees from all the transactions

in the queues of v1, ..., vjOPT (T )−1, as there are no more of them to take, and
inserting additional transactions must come at the expense of the higher valued
already chosen. We conclude that the revenue of the optimal algorithm is upper
bounded by

lim
T−→∞

∑
j<jOPT (T )

Mj(T ) · vj = lim
T−→∞

M(T ) ·
∑

j<jOPT (T )

rj · vj =

lim
T−→∞

n(T ) · b · η

λout
·

∑
j<jOPT (T )

rj · vj = lim
T−→∞

n(T ) · b · η

λout
·
∑
j∈θ

rj · vj ,



where we used Mj(T ) −→ rj · M(T ) (a.s.). Dividing by n(T ) completes the
proof. ⊓⊔

F ϵ-Sequential Equilibrium

In this section we present the equilibrium concept appropriate for the Inclusive-
F game. The game is represented by a tree, whose nodes represent the history
that evolved, including the current world state. At every time step t player i
knows that the current node is a member of a nonempty set I = I(i, t), and
he has a belief about the identity of this node, which is simply a probability
measure over I. We denote this belief by µi, and put µ := (µ1, ..., µN ).

We denote by gi player i’s strategy, and put g = (g1, ..., gN ). A pair (gi, µi)
is called an assessment. A pair (g, µ) is called an assessment profile, and it is
said to be consistent if the beliefs of every player are consistent with the profile,
according to Bayes’ rule; refer to [5, 8, 9] for a more formal and comprehensive
definition and setup.

For any information set I of player i denote by V i(I, g, µ) his expected utility
from the game, under the assessment profile (g, µ), conditioned on the game
reaching I.

Definition 4. Let ϵ > 0. An ϵ-perfect sequential equilibrium is a consistent
assessment profile (g∗, µ∗), such that for any i, for any information set I of
player i, and for any feasible strategy f i of player i,

V i(I, (g∗−i, f i), µ∗)− V i(I, g∗, µ∗) < ϵ. (11)

(g∗−i, f i) denotes the strategy profile when all players, except i, play according
to the profile g∗, while i plays f i. Inequality (5) means, intuitively, that no
player can benefit by more than ϵ by deviating from its strategy g∗i. Naturally
enough, replacing ϵ by 0 yields the definition of a perfect sequential equilibrium.
We return now to Lemma 5:
Lemma 5. For every ϵ > 0 there is an ϵ-perfect sequential equilibrium in the
Inclusive-F game.

Proof. Let ϵ > 0, and choose T > logβ

(
ϵ · 1−β

b·v1

)
. Denote by Γ the Inclusive-F

game, and by Γ (T ) the game truncated after T . Formally, in Γ (T ) no blocks are
created after time T . The rewards in this game are dictated by the main chain
of sub(G(T ), B), where B is one of G(T )’s leaves (chosen according to F with
arbitrary tie breaking, as in Footnote 11). This means that the set of accepted
transactions T (A) attributed to a block A is determined by the order induced
by the run of Algorithm 1 on sub(G(T ), B).

The game Γ (T ) is a finite horizon one, hence by [5, 9] it obtains a sequential
equilibrium assessment profile, which we denote (g(T ), µ(T )). We can extend
i’s strategy gi(T ) to the game Γ by asserting that the player chooses at any
time t > T the “null action”, that is, the empty set of transactions; we denote
this extension (on all players) by g∗. We extend also players’ beliefs, by asserting



that at each t > T every player believes that none of the new transactions (those
added between T +1 and t) were chosen by any of the players; we denote by µ∗

this belief profile. It is easy to verify that the consistency of (g(T ), µ(T )) extends
to (g∗, µ∗).

We claim that (g∗, µ∗) satisfies (11). Indeed, let i and f i be as in Definition 4,
let I be an information set of i in Γ , and denote by t(I) the time step at which
it was reached.

Conditioned on the event that I was reached, the utilities from following two
different strategies can differ only in the rewards from blocks created at t(I) or
later, as the two game histories which evolve with and without the deviation,
must agree on the prefix until t(I). The maximal difference is then when one
strategy rewards the player with b transactions at every time step from t(I) on,
each with the maximal fee v1, while the other strategy gains him no further
benefit after T . Therefore, if t(I) > T

V i(I, (g∗−i, f i), µ∗)− V i(I, g∗, µ∗) ≤
∑∞

t=T+1 β
t · b · v1

= b · v1 · βT

1−β < ε

On the other hand, if t(I) ≤ T then I is also an information set in Γ (T ), since
prior to the truncation the player has the same information in the original and in
the truncated versions of the game. Denote by f i(T ) the strategy f i truncated
after T , in the sense that the player chooses the null action (or, the empty set)
at every t > T . f i(T ) is also a feasible strategy of player i in the game Γ (T ),
where only the prefix of f i(T ) is considered (as the game doesn’t continue after
T ).

Denote by V i(T )(I, g′, µ′) player i’s expected utility in the game Γ (T ), under
the assessment profile (g′, µ′), conditioned on the game reaching I. We have,

V i(I, (g∗−i, f i), µ∗)− V i(I, g∗, µ∗) =

V i(I, (g∗−i, f i), µ∗)− V i(I, (g∗−i, f i(T )), µ∗)+

V i(I, (g∗−i, f i(T )), µ∗)− V i(I, g∗, µ∗) ≤ (12)

V i(I, (g∗−i, f i), µ∗)− V i(I, (g∗−i, f i(T )), µ∗)+

V i(T )(I, (g(T )
−i
, f i(T )), µ(T ))− V i(T )(I, g(T ), µ(T )) ≤ (13)

∞∑
t=T+1

βt · b · v1 + V i(T )(I, (g(T )
−i
, f i(T )), µ(T ))− V i(T )(I, g(T ), µ(T )) ≤

(14)
∞∑

t=T+1

βt · b · v1 < ϵ.

The inequality in (12) holds because f i(T ) chooses the null action after T ,

hence V i(I, (g∗−i, f i(T )), µ∗) = V i(T )(I, (g(T )
−i
, f i(T )), µ(T )), whereas

V i(I, g∗, µ∗) ≥ V i(T )(I, g(T ), µ(T )), by definition. In (13) we used the fact



that f i and f i(T ) differ only after T , and in (14) the fact that (g(T ), µ(T )) is a
perfect sequential equilibrium in Γ (T ). ⊓⊔


