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Abstract

Link prediction functions are important tools that are used to
predict the evolution of a network, to locate hidden or surpris-
ing links, and to recommend new connections that should be
formed. Multiple link prediction functions have been devel-
oped in the past. However, their evaluation has mostly been
based on experimental work, which has shown that the qual-
ity of a link prediction function varies significantly depending
on the input domain. There is currently very little understand-
ing of why and how a specific link prediction function works
well for a particular domain. The underlying foundations of
a link prediction function are often left informal—each func-
tion contains implicit assumptions about the dynamics of link
formation, and about structural properties that result from
these dynamics.
We draw upon the motivation used in characterizations of
ranking algorithms, as well as other celebrated results from
social choice, and present an axiomatic basis for link predic-
tion. This approach seeks to deconstruct each function into
basic axioms, or properties, that make explicit its underly-
ing assumptions. Our framework uses “property templates”
that can be considered as general choices made by a func-
tion designer, such as what score is assigned to a 2-vertex
graph, which vertices are irrelevant to the score, how remov-
ing edges or contracting vertices affects the score, and more.
Using this framework, we fully characterize four well known
link prediction functions and show that they are in fact de-
rived from different variants of a single basic set of property
templates.

1 Introduction
Link prediction functions are widely used in a variety
of fields where complex networks are naturally studied.
Uses range from applications in social networks to discover
hidden or surprising connections and to suggest possible
“friends” to users, through collaborative filtering (Huang,
Li, and Chen 2005), scientific collaboration networks, bi-
ological and chemical networks, and more.

Several link prediction functions exist, each inspired by
different underlying principles of network formation and
creation (Leskovec et al. 2008; Qiu, He, and Yen 2011).
Such functions have mostly been evaluated empirically, and
have usually been found to work well in practice on specific
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data sets, while performing less favorably on others (Liben-
Nowell and Kleinberg 2007). This is not surprising given
that different dynamics often take part in the formation of
networks from diverse domains. However, this also means
that given a specific domain, there is currently no way to
predict which functions are likely to work well over this
domain. Some attempts have been made to train func-
tions (Al Hasan et al. 2006) in order to automatically choose
a well-performing function.

Except for a few notable exceptions (e.g. (Sarkar,
Chakrabarti, and Moore 2011)), most link prediction func-
tions do not have strong theoretical underpinnings, and it
is not always clear which properties they uphold. In this
work, we apply an axiomatic approach to the characteriza-
tion of link prediction functions, in an attempt to formalize
their underlying assumptions and basic components. This
can be helpful in the future in determining whether a spe-
cific function would be a good choice for a specific domain
(by seeing whether the underlying assumptions are compat-
ible), and can also be useful as a starting point for defining
new link prediction functions.

The axiomatic approach has been widely used in the con-
text of social choice, including celebrated results such as Ar-
row’s impossibility result (Arrow 1951), and the Gibbard-
Satterthwaite theorem (Gibbard 1973; Satterthwaite 1975).
Axiomatic treatments of this flavor, that expose deep im-
possibilities, show us the limits of what voting rules and
preference aggregation can achieve: certain sets of desirable
properties (or axioms) cannot all be satisfied within a sin-
gle voting rule. Compromises must therefore be made when
choosing which rule to use.

A second flavor of axiomatization is to find characteri-
zation results for algorithms or rules (e.g., axiomatization
of the Shapley value in cooperative game theory (Shapley
1953)). Such characterizations show how a set of properties
uniquely determines the rule or algorithm to be used, im-
plying again that any property not already satisfied by the
algorithm will not be added without the loss of another.

A clear progression from these classic results extends to
the domain of other algorithms that rank, for example, rank-
ing the vertices in a graph in order to determine their cen-
trality or “importance”. Such is the case with the PageRank
algorithm, that was originally constructed to rank individ-
ual pages in the web-graph to aid in finding relevant search



results. An axiomatic treatment for PageRank was given
in (Altman and Tennenholtz 2005). Other similar works
include axiomatizations of selection from within the elec-
torate, which is also formalized in a graph structure (Alon
et al. 2011), personalized ranking systems that rank vertices
differently from the perspective of the ranker (which is yet
another node in the graph) (Altman and Tennenholtz 2010),
tie strength in social networks (Gupte and Eliassi-Rad 2012),
and trust based recommendation systems (Andersen et al.
2008). Finally, work has also been performed on axiomatic
treatments of collaborative filtering (Pennock et al. 2000).

Our own work focuses, for the first time, on axiomatiza-
tions of link prediction functions. In contrast to previous
work, these functions do not rank vertices, but rather pairs
of vertices (potential edges), in order to ascertain which ones
are likely to exist or to appear in the graph. As is standard,
we use link prediction functions that provide a numerical
score to each such pair. This, in turn, implies a ranking of
vertices that is generated by sorting all pairs by their scores.

The main contributions of our paper are as follows:

• We present a set of axioms (properties), in the format of
“templates,” allowing us to express natural and intuitive
properties over specific types of graphs. Our axioms have
a plug-and-play flavor, in that they can be instantiated in
different manners, depending on the desired ranking prop-
erties. For example, an irrelevance property is defined us-
ing a function that trims away irrelevant portions of the
graph that do not affect the score for a pair of vertices.
Choosing different instantiations changes the property but
maintains its primary function: to focus attention on the
part of the graph that is influential and to specify which
parts are not. We include a brief description of the intu-
ition behind each axiom along with its definition.

• We show that different subsets of axioms can be used
to fully characterize standard link prediction functions.
Thus, while our axioms ostensibly consider limited types
of graphs, they imply ranking functions over arbitrary
graphs. In particular, we fully characterize four standard
link prediction functions, namely, hitting time, the Katz
score (Katz 1953), shortest path and reliability.

2 Formal Framework
Graphs. In the following, G denotes a simple directed
graph (with no self-edges), with vertices VG and edges EG.
We use ΓiG(v) and ΓoG(v) to denote the set of incoming and
outgoing neighbors, respectively, of v. We denote ΓG(v) =
ΓiG(v) ∪ ΓoG(v). We say that v is a source if ΓiG(v) = ∅ and
a sink if ΓoG(v) = ∅.

We will sometimes also consider graphs with weights on
the vertices and edges. Intuitively, a vertex weight νG(v) is
used to indicate properties of v, such as its importance or
its likelihood of failure. An edge weight εG(u, v) is used to
represent properties such as the closeness of the relationship
between u and v or the probability of using this relationship
when disseminating information.

We will say that G has independent probabilistic edge
weights if 0 ≤ εG(u, v) ≤ 1 for all (u, v) ∈ EG. We
will say that G has normalized probabilistic edge weights if

(1) 0 ≤ εG(u, v) ≤ 1 for all u, v, and (2) for all u it holds
that

∑
v∈Γo

G(u) εG(u, v) = 1. Intuitively, the former is used
to allow each edge to be chosen independently of the oth-
ers, while the latter models a probability distribution over
outgoing edges.

Link Prediction Functions. Link prediction functions as-
sociate pairs of vertices in a graph with a number that indi-
cates how likely it is for a link to form (or to exist) between
these vertices. Some functions use lower values to infer a
greater likelihood, while others use greater values. We use
R+ to denote the non-negative real numbers, and R>+ to de-
note R+ ∪ {>}, where > is a special symbol, such that for
all c ∈ R>+, we have c + > = > + c = c · > = > · c = >,
as well as min{c,>} = c and max{c,>} = >.

A link prediction function f associates every triple
G, u, v, where u, v ∈ VG, with a value in R>+. If
f(G, u, v) 6= >, we say that f is finite with respect to
G, u, v. Otherwise, we say that f is infinite with respect
toG, u, v. We use fin(f) to denote the (possibly infinite) set
of triples for which f(G, u, v) is finite.

We demonstrate the notion of a link prediction function
with several well-known examples.
Function 2.1 (Weighted Distance). One simple method
to predict links from u to v in G is simply by examin-
ing the shortest weighted distance from u to v, denoted
wdist(G, u, v). Note that if v is not reachable from u, the
value > is returned, and also note that a lower value indi-
cates that a link is more likely to form.

Function 2.2 (Reliability). Another method for predicting
links is based on the notion of network reliability. Each ver-
tex v and each edge e is associated with an independent
probability of non-failure νG(v) and εG(e), respectively.
Note that G has independent probabilistic edge weights.
Then, we can measure the likelihood of a link from u to v
simply by computing the probability that a path exists from
u to v, when u does not fail, i.e.,

rlbty(G, u, v) = P (v is reachable from u | u did not fail) .

This function gives greater likelihood to link formation when
it returns higher values.

Function 2.3 (Katz). The Katz measure (Katz 1953) is a
well-known method of measuring the closeness of a pair of
vertices u and v in a graph G, and is used for link predic-
tion:1

katzβ(G, u, v) =

∞∑
l=0

βl · |Pathsl(G, u, v)| (1)

where Pathsl(G, u, v) is the set of paths of length precisely
l from u to v in G, and 0 < β < 1. The parameter β is used
to give lower weight to paths that are longer.

1A more standard formulation of Katz has the summation start-
ing at paths of length one. To simplify the exposition, we use the
given version, with the summation starting at paths of length zero.
We note, however, that it is straightforward to adapt our results to
summations starting at one.



Note that katzβ may be undefined for pairs of vertices u, v
in a graph G. In particular, this occurs when the summation
does not converge, in which case we define katzβ(G, u, v) =
>. We note that these cases can easily be characterized, in
the following fashion (Liben-Nowell and Kleinberg 2007).
Let G be a graph, and u, v be vertices in G. Let Gu,v be the
subgraph of G containing u, v, and precisely those vertices
and edges that participate in some path from u to v. LetAu,v
be the adjacency matrix for Gu,v and Iu,v be the identity
matrix with the same dimension as Au,v . Then, it is well
known that katzβ(G, u, v) 6= > if and only if Iu,v − βAu,v
is invertible, i.e.,

fin(katzβ) = {(G, u, v) | Iu,v − βAu,v is invertible} .

Moreover, if (G, u, v) ∈ fin(katzβ), then the matrix

K = (Iu,v − βAu,v)−1 (2)

satisfies that Ki,j = katzβ(G, vi, vj), where vi and vj are
the i-th and j-th vertices in Gu,v . 2

Function 2.4 (Hitting Time). Hitting time is another well
known link prediction function. Intuitively, a random walk
starting at vertex u iteratively moves to a neighbor chosen
uniformly at random. The hitting time hit(G, u, v) from u
to v is the expected number of steps required for a random
walk starting at u to first reach v. A slightly more expres-
sive version of hitting time, which we will use in this pa-
per, considers weighted graphs with probabilities associated
with edges, i.e., graphs have normalized probabilistic edge
weights. A random walk now chooses a neighbor w of u at
random, with probability εG(u,w).

We say that v is strongly reachable from u in G, written
u G v, if for every nodew that is reachable from u without
traversing v, it holds that v is reachable from w. Intuitively,
if u G v, then every path starting at u can eventually reach
v.

It is immediately obvious that

• If u 6 G v, then the hitting time from u to v is not finite,
written hit(G, u, v) = >.

• Otherwise, hit(G, u, v) is{
0 u = v

1 +
∑
w∈Γo

G(u) εG(u,w) · hit(G,w, v) u 6= v

3 Link Prediction Axioms
In this paper, we will focus on axioms (also called proper-
ties) that link prediction functions may satisfy. These ax-
ioms typically consider special cases of graphs, and specify
how to compute a link prediction function based on a reduc-
tion to a smaller (or simpler) graph. Interestingly, we will
show that although the axioms only explicitly deal with spe-
cial cases, they can often completely characterize the behav-
ior of a link prediction function on an arbitrary graph. This
characterization by means of special cases allows a deeper

2Since the standard formation of Katz sums paths starting from
length one, this formula appears in the literature as (I−βA)−1−I .

understanding of the underlying principles of various func-
tions, and can also be a source of inspiration for additional
functions.

In the following f is a link prediction function. We will
consider graphs G for which both νG and εG are defined.

Pair Graphs. We first focus on graphs G containing only
a pair of vertices u, v, and either a single edge from u to v,
or no edge at all. We call G a pair graph. The Pair Graph
property defines the scoring function for the simplest non-
trivial case, and so imbues meaning to the edge and vertex
weights, as well as to the existence of an edge.

Suppose there is an edge from u to v. In this case, it is nat-
ural to use the likelihood of taking edge (u, v), along with
the value of the vertex v, to define f(G, u, v). On the other
hand, if there is no edge in G, then there is no indication in
the graph that a link should form from u to v. In this case,
f(G, u, v) is given the worst possible score. We observe that
the notion of a “worst” possible score can differ from func-
tion to function, as there are those for which higher scores
indicate greater likelihood, while there are those who behave
in the opposite manner. Therefore, the following property is
parameterized by a value � ∈ R>+ representing this worst
possible score.

Property 1. PAIR GRAPH: (�-PG). We say that f satisfies
the �-PG property if whenever G is a pair graph,

f(G, u, v) =

{
εG(u, v) · νG(v) (u, v) ∈ EG
� EG = ∅

Alternatives for Source Vertices. We now consider the
special case in which we are interested in computing
f(G, u, v) when u is a source vertex. This case essentially
defines the meaning of alternative edges emanating from the
source vertex. Is the best score among the different routes
chosen (as in the case of a message taking the shortest path
to its destination)? Or is a weighted combination of scores
considered (for example in case of an undirected message
travelling at random)?

We will provide two different properties that are used to
model functions in which edge weights are normalized, or
are arbitrary.

Suppose that w ∈ ΓoG(u). We use Gw to denote the graph
derived by (1) removing all outgoing edges from u, other
than (u,w) (2) defining νGw

to be equal to νG, and (3) defin-
ing εGw

to be equal to εG. We call Gw the same probability
alternative graph for G, u,w.

We say that G′w is the propagated probability alternative
graph for G, u,w, if G′w is defined in the same manner as
Gw, except that we have εG′

w
(u,w) = 1. Intuitively, G′w

represents the graph in which we have “chosen” to use some
edge (u,w) to reach v from u, and, hence, the probability is
modified. Figure 1 (a) demonstrates these graph transforma-
tions.

The following properties express f(G, u, v) as a func-
tion of same probability or propagated probability alterna-
tive graphs. Since there are many different useful ways in
which these values can be combined to derive f(G, u, v),
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Figure 1: Illustration of Properties.

our properties are parameterized by an aggregate function α.
(An aggregate function receives a set of values and returns a
single value.)
Property 2. ALTERNATIVE GRAPHS: (α-SAMEALT, α-
PROPALT). We say that f satisfies the α-SameAlt property
if whenever u is a source vertex in G, then

f(G, u, v) = α({f(Gw, u, v) | w ∈ ΓoG(v)}) ,
where Gw is the same probability alternative graph for
G, u,w.

We say that f satisfies the α-PropAlt property if whenever
u is a source vertex in G, then
f(G, u, v) = α({εG(u,w) · f(Gw, u, v) | w ∈ ΓoG(v)}) ,

where Gw is the propagated probability alternative graph
for G, u,w.

Series Graphs. Sometimes it is possible to split a graph
G with vertices u, v into two graphs connected in sequence

through a single vertex. Decomposing the graph in this way
reveals the effect of chaining graphs (and paths). Does the
likelihood of a connection decay as distance is added, such
as in the case of rumor travelling in a social network? Is the
effect additive or multiplicative?

Formally, let G1 and G2 be graphs such that:

• u is in G1 and v is in G2;

• there is a single vertex w in both G1 and G2, and w is a
sink in G1 or a source in G2.

When w is a sink (source) in G1, we will say that G1 and
G2 are w-sink (w-source) series graphs covering G, u, v.

Since w is, in essence, a single point of division between
u and v, it is natural to express f(G, u, v) as a function of
f(G1, u, w) and f(G2, w, v). Different such functions can
be useful, and thus, the following properties are parameter-
ized by a binary operation ⊕.

Property 3. SINK (SOURCE) SERIES: (⊕-SNK, ⊕-SRC).



We say that f satisfies the ⊕-Snk property (resp. the ⊕-
Src property) if whenever G1 and G2 are w-sink (resp. w-
source) series graphs covering G, u, v, then

f(G, u, v) = f(G1, u, w)⊕ f(G2, w, v) .

This property is demonstrated in Figure 1 (b).

Splitting Vertices. We now consider graphs in which there
is some vertex y (different from u and v) that has multiple
incoming or outgoing edges. The following properties ex-
press f(G, u, v) in terms of f(G′, u, v) where G′ is a graph
derived from G in which y has been split into two vertices.
A single incoming (resp. outgoing) edge of the original ver-
tex is reconnected to only one copy, while the other outgoing
(resp. incoming) edges are replicated and connected to both
vertices.

Intuitively, this property reveals the process occurring at
each vertex. Suppose for example, messages (or rumors, or
infections) come in through several incoming edges. Is this
message identical? Does it get sent out through all outgoing
edges (as is the case with infections)? Or does it get for-
warded along a single outgoing edge? We determine this by
removing an edge from the vertex and preserve as much as
possible of the structure. The basic operation used to derive
G′ is called an incoming or outgoing split, and is defined
next.

We start with incoming splits. Let e = (x, y) be an edge
in G. We say that G′ is the e, y-split of G if the following
three conditions hold. First, VG′ = VG ∪ {y′} where y′ is
a new vertex. Second, EG′ is derived from EG by replac-
ing edge e with (x, y′) (thereby leaving y with less incom-
ing edges than before), and adding an edge (y′, z) for every
z ∈ ΓoG(y). Finally, if π : VG′ → VG is the identity on
VG and maps y′ to y, then for all vertices w and edges e′,
we define νG′(w) = νG(π(w)) and εG′(e′) = εG(π(e′)).
Figure 1 (d) demonstrates this transformation on the graph
in Figure 1 (c).
Property 4. INCOMING SPLIT: (IN-SPLT). We say that f
satisfies the In-Splt property if whenever G′ is the e, y-split
of G for some y 6= u, y 6= v and incoming edge e of y, then

f(G, u, v) = f(G′, u, v) .

Outgoing splits are somewhat more intricate, due to the
different ways in which the probability weights attached to
edges can change. We consider two different options: leav-
ing the probabilities unchanged, or propagating probabilities
so that the probabilities of entire paths being taken do not
change. Let e = (y, z) be an edge in G. Let G′ be the graph
such that (1) VG′ = VG ∪ {y′} where y′ is a new vertex
and (2) EG′ is derived from EG by replacing edge e with
(y′, z) (thereby leaving y with less outgoing edges than be-
fore), and adding an edge (x, y′) for every x ∈ ΓiG(y). Let
π : VG′ → VG be the identity on VG and map y′ to y.

We say thatG′ is the same probability e, y-split ofG if for
all vertices w and edges e′, we have νG′(w) = νG(π(w))
and εG′(e′) = εG(π(e′)). We say that G′ is the propagated
probability e, y-split ofG if for all verticesw and edges e′ =
(w1, w2), we have νG′(w) = νG(π(w)) and

• if w1 = y′ (and thus w2 = z), then ε′G(w1, w2) = 1;

• if w1 = y, then ε′G(w1, w2) = εG(w1, w2)/(1 −
εG(y, z));

• if w2 = y′, then ε′G(w1, w2) = εG(w1, y) · εG(y, z);

• if w2 = y, then ε′G(w1, w2) = εG(w1, y) · (1− εG(y, z));

• otherwise εG′(e′) = εG(π(e′)).

where e = (y, z). The result of a propagated probability e, y
split of the graph of Figure 1 (c) appears in Figure 1 (e).

Using these two types of outgoing splits, we define addi-
tional properties.

Property 5. OUTGOING SPLIT: (SAMEOUT-SPLT,
PROPOUT-SPLIT). We say that f satisfies the SameOut-Splt
property (resp. the PropOut-Split property) if wheneverG′ is
the same probability (resp. propagated probability) e, y-split
of G for some y 6= u, y 6= v and outgoing edge e of y, then

f(G, u, v) = f(G′, u, v) .

Removing Vertices. While the previous property consid-
ered splitting vertices, we now consider removing vertices
completely from a graph. This is useful, in particular, when
the weights on vertices and edges indicate their probability
of failure, or some probability that they will transmit an in-
fection further.

Let G be a graph and y be a vertex in G. We use G¬y
to denote the graph derived by removing y and all its ad-
jacent edges from G. We use Gy to denote the graph de-
rived by following the same process as for G¬y , and then
adding in the edge (x, z) for all x ∈ ΓiG(y), z ∈ ΓoG(y) with
εGy

(x, z) = εG(x, y) · εG(y, z). In order to remain with a
simple graph, we do two final corrections to Gy . First, we
remove any self edges that have been created. Second, if
there are two edges e1, e2, with weights p1, p2, between the
same two vertices, we only retain a single edge e, and define
εGy (e) = 1− (1− p1) · (1− p2). Figure 1 (f) demonstrates
this transformation on the graph in Figure 1 (c).

Property 6. REMOVING VERTICES: (REMV). We say that
f satisfies the RemV property if whenever y 6= u, y 6= v the
following holds:

f(G, u, v) = νG(y)·f(Gy, u, v)+(1−νG(y))·f(G¬y, u, v).

Irrelevant Portions of Graph. Our final property is used
to state that certain portions (vertices and/or edges) are ir-
relevant when computing f(G, u, v). This property is im-
portant as it can focus the attention on a smaller portion
of the graph. Different link prediction functions may deem
different portions of the graph as irrelevant. For example,
katzβ can ignore edges that are not on any path from u to
v, while wdist can ignore edges that are not on any simple
path from u to v. Thus, the following property is param-
eterized by a relevance function Υ(G, u, v) which returns
a subgraph of G that should not be ignored when comput-
ing f(G, u, v). We note that the weights on the subgraph
Υ(G, u, v) will be renormalized, if G has normalized prob-
abilistic edge weights.



Every link prediction function will satisfy this property
when the relevance function is chosen as the identity func-
tion on graphs. However, some link prediction functions will
satisfy this property with richer functions. Furthermore, rel-
evance functions are selected to be almost “obvious”, for ex-
ample, unreachable vertices, or vertices that are not on any
path between the pair we are scoring.

Property 7. RELEVANT SUBGRAPH: (Υ-REL). We say
that f satisfies the Υ-Rel property if for all G, u, v, it holds
that f(G, u, v) = f(Υ(G, u, v), u, v).

4 Characterizing Link Prediction Functions
We now show that the axioms presented can be used to
uniquely characterize several standard link prediction func-
tions. For this we will need to instantiate the property pa-
rameters with a variety of values. We use min and max to
denote the aggregation function minimum and maximum,
respectively. We also define the following relevance func-
tions:

• Υpath(G, u, v): Returns the subgraph of G containing
u, v and all vertices and edges that participate in a path
from u to v;

• Υspath(G, u, v): Returns the subgraph of G containing
u, v and all vertices and edges that participate in a simple
path from u to v;

• Υfpath(G, u, v): Returns the subgraph of G containing
u, v and all vertices and edges that participate in a path
from u to v that does not contain v more than once.

Due to lack of space, proofs are omitted.

Theorem 4.1. Let G be a graph with weights on edges and
the constant weight function of 1 on vertices. Let u, v be
vertices in G. There is a single link prediction function f
satisfying the properties >-PG, min-SameAlt, +-Snk and
Υspath-Rel, and this function is precisely wdist(G, u, v).

We note that wdist also satisfies +-Src, In-Splt and
SameOut-Splt, but these properties are not needed to char-
acterize wdist. (An alternative characterization to the one
given in Theorem 4.1 can use +-Src instead of +-Snk.)

Theorem 4.2. Let G be a graph with probabilities on ver-
tices and independent probabilistic weights on edges. Let
u, v be vertices in G. There is a single link prediction func-
tion f satisfying the properties 0-PG, RemV and Υspath-Rel,
and this function is precisely rlbty.

The function rlbty also satisfies max-Alt, but this prop-
erty is not required for the characterization. For the spe-
cial case where all probabilities are 1 or 0, we observe that
rlbty becomes rchblty (reachability) which gives a score of
1 if v is reachable from u, and 0 otherwise. For this rea-
son, rchblty satisfies the properties from Theorem 4.2 (as
well as max-Alt). It also satisfies×-Snk,×-Src, In-Splt and
SameOut-Splt. An alternative characterization to that given
here for rlbty uses an additional axiom to reduce the graph
to one with 0/1 weights, and then uses the above-mentioned
axioms for rchblty. We omit further details due to lack of
space.

Theorem 4.3. Let G be a graph with the constant weight
function of 1 on vertices and the constant weight function
of β on edges. Let u, v be vertices in G. There is a single
link prediction function f satisfying the properties 0-PG,

∑
-

SameAlt, ×-Snk, ×-Src, In-Splt, SameOut-Splt, Υpath-Rel,
and and this function is precisely katzβ(G, u, v).

Theorem 4.4. Let G be a graph with normalized proba-
bilistic edge weights and the constant weight function of 1
on vertices. Let u, v be vertices in G. There is a single link
prediction function f satisfying the properties >-PG,

∑
-

PropAlt, +-Snk, In-Splt, PropOut-Splt, Υfpath-Rel, and this
function is precisely hit(G, u, v).

Theorems 4.1–4.4 are proven in two parts. First we show
that each of the link prediction functions of interest satis-
fies the given properties (e.g., we show that wdist satisfies
>-PG, min-SameAlt, +-Snk). This is usually not difficult
and requires a careful analysis of the behavior of the link
ranking functions on the the special graphs specified in the
properties.

The second part of each proof is to show that the set of
given properties uniquely defines the specific link prediction
function (i.e., there exist no additional functions satisfying
the set of properties). This type of proof is typically more
intricate. For wdist, we prove the required by induction on
the length of the longest simple path from u to v. For rlbty,
we show uniqueness by induction on the number of vertices
inG. The proof for katzβ involves applying a series of graph
transformations and an analysis that formulates the score re-
turned by link prediction functions satisfying the properties
of Theorem 4.3 as a matrix equation that coincides with the
definition of katzβ , i.e., (Iu,v − βAu,v)−1. Finally, to show
the second part of hit, we again apply a series of graph trans-
formations and analysis to derive a function coinciding with
hit.

5 Conclusions and Future Work

We have presented an axiomatization framework for a class
including several link prediction functions and have shown
their characterizations. These axioms shed light on the un-
derlying principles of the various functions. Thus, they can
also be seen as a starting point to develop additional link pre-
diction functions (or to enrich those that have been studied
in the past).

In the future, we intend to develop new link prediction
functions using instantiations of the properties in different
ways, and to test their quality on a variety of domains, with
different principles of network formation. We will also look
for new and appealing properties, and check for impossi-
bility results for certain combinations of properties. In ad-
dition, many other link prediction functions are known in
the literature, and further axiomatic treatment for these is of
interest. Additional link prediction functions to be consid-
ered include, among others, preferential attachment, triadic
closure, and Adamic-Adar, as well as network-link scoring
domains coming from sociology, such as balance theory.
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