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ABSTRACT
We address the problem of quickly finding shortest paths in known
graphs. We propose a method that relies on identifying areasthat
tend to be searched needlessly (areas we callswamps), and exploits
this knowledge to improve search. The method requires relatively
little memory, and reduces search cost drastically, while still finding
optimal paths. Our method is independent of the heuristics used in
the search, and of the search algorithm. We present experimental
results that support our claims, and provide an anytime algorithm
for the pre-processing stage that identifies swamps.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search—Graph and tree search strategies
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Algorithms, Experimentation

Keywords
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1. INTRODUCTION
Many real-time applications search for shortest paths in known

graphs. Examples include strategy games where multiple units tra-
verse a large board, as well as robotics applications where robots
are required to navigate, planning their path through some environ-
ment, usually using some variant of A* [1] or IDA* [2].

We introduce a method that prunes the search graph by remov-
ing areas where search is usually wasted, thus lowering the overall
search cost. Our method guarantees that paths found are optimal,
even after the pruning. We automatically identify areas we call
swamps, and efficiently store information about them in the graph.
Then, while searching for shortest paths between two nodes of the
graph, we block the search as it tries to unnecessarily enterthose
regions. The pre-processing stage is done using an anytime algo-
rithm, in which we locate swamps in a grid; i.e., the algorithm gives
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better results the longer it runs. The detection process canthus be
run in the background, to improve the results of future searches in
the graph. We empirically evaluated our method on 2D four and
eight neighbor grids with randomly-placed obstacles, where search
is performed using the A* algorithm with an admissible, consistent
heuristic. The results demonstrate the usefulness of our approach
and provide information regarding the efficiency of our method.

1.1 Swamps
Intuitively, a swamp is an area in the graph such that any shortest

path that passes through it either starts or ends inside thatarea, or
has an alternative shortest path that does not pass through.1 We de-
fine this notion more formally below (see Figure 1 for an example).

DEFINITION 1. A swampS in an undirected graphG = (V, E)
is a group of nodesS ⊆ V such that any 2 nodesv1, v2 which are
not part ofS have a shortest path that does not pass throughS . A
swamp-regionR is a set of connected nodes that is a swamp.

Figure 1: An example of a swamp-region. Nodes filled in black
are obstacles. Nodes{s1, s2, s3, s4} form a swamp-region.

2. DETECTING, EXPLOITING SWAMPS
To detect swamp-regions we make use of the following lemma:

LEMMA 1. LetS be a set of nodes inV . If for any two nodes
v1, v2 on the external boundary ofS there exists a shortest path
betweenv1, v2 that does not pass throughS , thenS is a swamp.

To detect a swamp-region, we select a connected group of nodesS

and trim it to a swamp-region, by checking all shortest pathsbe-
tween pairs of nodes on its boundary. If a pair of nodes contradicts
S being a swamp-region according to Lemma 1, we trimS, and
repeat until we get a swamp-region.

It is trivially possible to define the entire graph as a singlelarge
swamp. This, however, will not be beneficial when trying to exploit
1A slightly more restrictive alternative is to define a swamp as a
group of nodes that isneverused in any shortest path. That def-
inition has nicer properties in some sense, but yields significantly
smaller swamps and is thus less useful in practice.



the swamps for more efficient searches. The same goes for very
small swamps, that contain just one node. In the first case there
are no searches that start and end outside the swamp, and in the
second case the graph is barely pruned. We will try to increase the
benefits we get from swamps by using a swamp that is completely
partitioned into different swamp-regions, any subset of which is
still a swamp. For this purpose, we add the following definition:

DEFINITION 2. A swamp-collectionC is a set of swamp-regions,
any subset of which forms a swamp together.C = {R1, . . .Rk}

To detect a swamp-collection, we apply our detection algorithm
incrementally in the presence of swamp regions that have already
been located. The resulting swamp-region can be safely added to
the swamp-collection.

To utilize the information about swamps during search we apply
the following algorithm:

Alg. 1: When searching for a path between nodesv1 andv2:
1. LetV be the set of vertices in the graph.
2. Let C = {R1, . . . ,Rk} be the full swamp-collection that was
found in the graph.
3. LetR′ ∈ C be the swamp-region thatv1 belongs to, or∅ if v1

does not belong to any swamp-region.
4. LetR′′ ∈ C be the swamp-region thatv2 belongs to, or∅ if v2

does not belong to any swamp-region.

5. Search only in the nodes of
“

V \
S

k

i=1
Ri

”

∪ R′ ∪ R′′

LEMMA 2. Running Alg. 1 will always find the shortest path
between nodesv1, v2.

3. EXPERIMENTAL RESULTS
We ran experiments on four and eight neighbor grids, where each

node can be either blocked or free. Nodes were blocked at random
with varying probabilities in each test, using different grid sizes.
In each grid, nodes were independently blocked with equal proba-
bility.2 We then ran our swamp detection algorithms, and various
searches, with and without the swamps, to measure performance.
We will present here two different types of measurement: thetime
it takes to perform the search (machine dependent), and the number
of nodes expanded (machine independent). Our implementation
was in Java; experiments measuring run-time performance were
done on a Pentium 4, 2.4GHZ machine, with 500MB of RAM. We
ran our swamp detection algorithm on each generated grid, and ran
1,000 searches between pairs of points. Each search was repeated
twice: once using regular A*, and once using the same implemen-
tation of A* but also using the additional information on theswamp
that was detected in the pre-processing stage.

Our experiments demonstrated that using swamps results in a
significant saving in search costs (Figure 2). The saving becomes
more pronounced in larger grid sizes, where A* expands many
more nodes than are strictly needed for the path. The densityof
obstacles is also a factor in the efficiency of the method. As the
number of obstacles rises, so does our algorithm’s savings.

In addition to the number of expanded nodes, we also measured
the time it took to detect swamps, and the time it took to execute
searches with and without swamps. Figure 3 displays the compari-
son of search time for 4-neighbor and 8-neighbor grids. The figures
show that the saving in the number of nodes expanded translated to
a saving in search time. Another interesting measurement isthe

2Since 8-neighbor graphs are much more connected, as they con-
tain more edges, we used higher obstacle densities for the 8-
neighbor grids—otherwise, a search in these graphs is too easy.
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Figure 2: Expanded nodes (swamps, no swamps) and path size,
4/8-neighbor grid
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Figure 3: Time it took to execute searches with and without
swamps, 4/8 neighbors grids

number of searches, on average, that it takes to make up for the
time it took to perform the swamp pre-processing. This data for 4
and 8-neighbor grids, shown in Figure 4, demonstrate that the state
pre-processing cost is returned after a few hundred searches, and
that this number decreases as the size of the grid increases.
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(a) four neighbor grid
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Figure 4: The average number of searches needed to make up
for the time it cost to pre-process the graph
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