
Adding Incentives to File-Sharing Systems

Aviv Zohar
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Jerusalem, Israel and

Microsoft Israel R&D Center, Herzlia, Israel
avivz@cs.huji.ac.il

Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Jerusalem, Israel

jeff@cs.huji.ac.il

ABSTRACT
Modern peer-to-peer file sharing systems rely heavily on the
willingness of users to distribute files to others. A selfish
user can choose to download a file and consume resources
without uploading in return. This form of free-riding plagues
all currently deployed peer-to-peer systems.

We present a novel protocol for a BitTorrent-like system
(i.e., one in which only one file is being shared) that strongly
discourages users from downloading a file without sharing it.
Our protocol requires very little computation, and can eas-
ily be implemented in today’s peer-to-peer systems. It is
resistant to all forms of manipulation, including the use of
multiple free identities, and does not require any coordina-
tion among seeds. We analyze our protocol and show that if
downloading peers are rational, a new system equilibrium is
reached in which all peers upload at least some percentage
of the file they are given.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; C.2.2 [Computer-Commu-
nication Networks]: Network Protocols—Applications

General Terms
Algorithms, Design, Economics

Keywords
File Sharing, Incentives, Peer-to-Peer, BitTorrent

1. INTRODUCTION
Before peer-to-peer file sharing systems appeared, large-

scale content distribution on the internet was a costly affair.
Purchasing bandwidth and storage space for the dissemina-
tion of content that could potentially be downloaded by mil-
lions of users world-wide put a strain on content providers.

Peer-to-peer file sharing systems shifted some of the cost
of distribution to the consumer of information. In addition
to downloading files for his own use, a downloader (or peer,
as he is usually called in peer-to-peer systems) is also re-
quired to upload pieces of the file he has obtained to his

Cite as: Adding Incentives to File-Sharing Systems, Aviv Zohar and
Jeffrey S. Rosenschein, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sich-
man, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hun-
gary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

peers. The result is a system in which the original provider
of content need only distribute as little as a single copy of
the file (possibly in pieces) to others, who then share the
different pieces among themselves.

Since the early days of file sharing systems, it has been ap-
parent that some users are not eager to take up the burden
of distributing files to others [1]. Users may decide not to
upload for many reasons: some may prefer to reserve their
upload bandwidth for other traffic that they deem more im-
portant, others are unable to offer high upload speeds due
to asymmetric internet connections, and some are download-
ing illegal content and wish to avoid prosecution. While the
protocols of file sharing systems require everyone to upload
pieces of the file to others, no mechanism has been put into
place that enforces this securely. Since users run their own
copy of the peer-to-peer client, they are able to modify it
or choose an alternate client so as to avoid uploading to
other peers. Those who choose not to upload are consum-
ing resources without contributing in return, and are thus
free-riding at the expense of others.

In this paper, we propose a file sharing protocol that prov-
ably changes the incentives to share files in the system. Our
protocol motivates peers to share a certain portion of the file
they are downloading even before they complete the down-
load. In this manner we support the main goal of peer-
to-peer file sharing: to shift much of the cost of content
distribution to the downloading peers. Our protocol resists
manipulation by rational peers that seek to maximize the
use of their upload and download resources, and guarantees
a more egalitarian distribution of costs in the system. In
our suggested mechanism, peers cannot use multiple iden-
tities (which we assume are created effortlessly) in order to
alleviate the high costs associated with not sharing. Further-
more, peers cannot compensate for the losses they incur that
arise from their sharing less, by establishing a large number
of links to others. The implementation of our mechanism
is quite straightforward, and requires no complex interac-
tion or coordination among uploading seeds. The resulting
system is slightly less robust to the failure of all uploading
peers, but we offer several mechanisms that mitigate this
deficiency. We also suggest a model of costs for the peer-to-
peer network, and analyze our protocol within it.

Our approach does not assume the existence of a monetary
or reputation system that keeps track of the behavior of
peers and that can be used to reward or punish them. Such
systems usually have to be centralized in order to be reliable
(and thus constitute a possible point of failure for the entire
file-sharing network), or prove to be hard to scale up. To the

best of our knowledge, there is currently no deployed system
that enables micro-payments or reputation aggregation at
the scale needed for file-sharing networks.

1.1 Related Work
An important previous step towards installing proper in-

centives for uploading was taken with the creation of the
BitTorrent protocol [3]—currently the most commonly used
protocol for file sharing [10]. In BitTorrent, a group of peers
shares only a single file and locates one another through a
small-scale centralized server that is called a tracker. Peers
that have a full copy of the file and are no longer download-
ing are called seeds, and are expected to remain online and
donate pieces of the file to their peers in order to make sure
that a full copy of the file exists. The novelty in BitTorrent
is in the interaction between downloading peers, who trade
pieces of the file being downloaded. When trading with oth-
ers, peers attempt to reciprocate and upload more to peers
who have given them more. This strategy, which operates
according to the principles of “Tit-for-Tat”, rewards upload-
ers with more pieces of the file and punishes peers who do
not upload, giving them an overall lower download rate.

Despite attempts at hurting free-riders, experiments con-
ducted with the BitTorrent protocol show that it is not resis-
tant to protocol manipulation by selfish users. The BitThief
client [14] demonstrates that files can be obtained quickly
even without uploading. While BitThief does not upload at
all, it still enjoys downloads from seeds (who give out in-
formation freely—since they do not download the file them-
selves) and some limited amount of download from other
peers, that still offer some information before they discover
none is being sent in return. A similar approach is taken
up in the Large-View exploit [15], where a modified BitTor-
rent client maximizes its download rate by simultaneously
opening links to many seeds and peers, thereby multiplying
the small download rates from each link by a large factor.
Our own mechanism operates in an environment similar to
that of BitTorrent (we similarly assume that only one file is
being shared) and is resistant to the Large-View exploit.

There is a large body of work on incentives in peer-to-peer
systems (see [4] for a broader overview). Previous work has
often assumed the existence of a monetary system [9] that
assists in rewarding contributing users, or a reliable rep-
utation system [2] that keeps tally of the contribution of
each peer and helps decide who gets more of the system’s
resources. Others use different models for peer-to-peer sys-
tems and free-riding behavior, including the use of popula-
tion dynamics [5, 7, 13]. In [12], BitTorrent’s trading mech-
anism is analyzed as an auction, and some modifications to
its trading policies are suggested. In this paper, we offer an
alternative trading mechanism but, more importantly, we
also suggest changes to the upload protocol used by seeds
that upload to others for free.

In [6], file sharing is modeled as a social phenomenon—
users consider whether or not to contribute files based on
the number of other users who contribute. A mechanism is
added to impose a penalty on users entering the system to
discourage them from leaving and then rejoining with a new
identity (and thus dodge any record of past behavior).

1.2 Structure of the Paper
In Section 2 we introduce our model for the costs associ-

ated with sharing files. In Section 3 we discuss a first version

of our suggested protocol for file sharing, and analyze the in-
centive structure it imposes. In Section 4 we suggest a more
developed protocol that distributes files more efficiently and
analyze it as well. We then present, in Section 5, a strategy
for fairly and equally trading files between two peers, and
show additional improvements to our protocol. In Section 6,
we discuss open problems and future work.

2. MODELING COSTS
We model a BitTorrent-like system where participants be-

long to one of two groups: seeds and peers. Seeds are nodes
that have a full copy of the file being shared and are offering
it to others, without expecting anything in return. Peers are
nodes that do not have the complete file, and are trying to
obtain missing pieces. Our model treats only the peers as
rational players (there is no way to provide motivation for
seeds to upload in a single-file model without payments).

We assume that the file being shared is partitioned into
r regions. Each region is further partitioned into m blocks.
Blocks can be sent and received separately by the peers.

We assume that downloading and uploading blocks of
data consumes resources from both downloaders and upload-
ers (bandwidth that must be purchased, time to download,
etc.). We denote the cost of downloading a single block as
Cdl and the cost of uploading a block as Cup. Consequently,
the cost that must be paid by a peer to download the en-
tire file is at least the cost of downloading all the blocks:
r ·m · Cdl. We model peers as rational players who want to
obtain all the blocks belonging to a file while paying as little
as possible for resources expended in the process.

Peers are assumed to have the ability to connect anony-
mously to seeds and to other peers—as many times as they
want, and without any significant overhead. We further as-
sume that different peers (or even the different identities
assumed by the same peer) are indistinguishable, and so no
information regarding the past behavior of a specific peer
can be maintained from one session to another.

Our model of costs for upload and download of a single
block fits several common scenarios. The first is one in which
customers pay a flat rate for a constant amount of bandwidth
purchased from a service provider (this is common in many
broadband connections). In this case, the cost of download-
ing a single block can be thought of as the amount of time
it took to download this block at the given bandwidth. A
downloader who minimizes his total cost will minimize the
time it takes to obtain the full file, thus freeing up download
and upload bandwidth for use by other applications.

Another common scenario is one in which users pay ac-
cording to the amount of data they send or receive. This
is quite common, for example, in the connectivity pack-
ages that cell phone companies sell for third generation cell
phones. In this case, the cost of downloading or uploading
can be measured in actual currency.

The main difference between our model and previous mod-
els that have considered the costs of download or upload is
our assumption that if a portion of the bandwidth of a peer
is not being used to download at a certain moment in time,
that “resource” is not lost and is probably used to download
another file, or for some other purpose. To truly hurt a mis-
behaving peer, one has to waste the resources of that peer
by making it download or upload excessively.1 Therefore,

1Merely slowing the rate of transfer to a misbehaving peer is

when computing the total costs paid by each participant,
we only count downloaded and uploaded blocks.

To simplify the analysis of our protocol for the time being,
we add the assumption that peers can trade blocks (1-for-1)
if they wish to do so, and that trading is performed securely,
so that both parties involved in the transaction are unable
to get a block without giving one in return. We shall later
show that this can be achieved in an efficient manner.

3. THE FILE SHARING PROTOCOL
The basis of our approach is as follows. When a peer con-

nects to a seed it will be allowed to specify a region of the
desired file from which it wishes to receive blocks. The seeds
will not grant requests for specific blocks, but will instead
randomly select blocks from that region and send them to
the requesting peer. In this manner, a peer who attempts
to contact any seed and request blocks from that region a
second time will receive (by chance) some of the blocks it
already owns.2 This means that the peer downloads new
blocks at a higher effective cost if he insists on download-
ing from seeds. As an alternative, the peer will be able to
request specific blocks that he is missing from other peers,
but only in exchange for specific blocks that they will re-
quest. This is indeed more costly than downloading for free
(since upload is required in return) but may be worthwhile
if the effective cost of downloading the same data from seeds
is higher. We shall say that a block has been covered if it
was sent at least once to the peer, and that a block collides
if it has already been downloaded once, and is downloaded
again. While a misbehaving peer may experience many such
collisions, a compliant peer will suffer none, and the overall
efficiency of the system will not be damaged, so long as all
peers act rationally.

We assume that seeds wish to donate a fraction of the file,
n/q, such that q is a prime number or a prime power (i.e., if
p is a prime then q can be one of p, p2, p3, . . .). We will later
describe the exact fraction n/q that can be shared without
violating incentive compatibility (see Theorem 3.2). We also
assume that there exists an integer d such that m = qd.

Let Fq be the finite field with q elements. Let V be the
vector space (Fq)d (of dimension d) over the field Fq. We as-
sign to all blocks within a region an address that is expressed
in base q: (a1, . . . , ad) ∈ V where ∀i, we have ai ∈ Fq.

Protocol I:
1. Receive a request from a peer for blocks from some region.
2. Randomly and uniformly select a vector ~s ∈ V \ {~0}.
3. Randomly and uniformly select n values V als = {b1, . . . , bn}
such that bi ∈ Fq without repetitions: i 6= j → bi 6= bj .
4. Send to the peer all blocks in the requested region that
have an address (a1, . . . , ad) for which

Pd
i=1 si · ai ∈ V als

where this calculation is performed in the field Fq.

Note that the addresses selected in the protocol reside on
a set of hyperplanes described by ~s ·~a = b for various values
b ∈ V als. This will be a key ingredient in our analysis, since
the intersection of two hyperplanes in a finite vector space
is of known size.

not enough, as that peer is able to open many simultaneous
connections to other peers and seeds, and download a small
amount from each of them, in parallel.
2This is very similar in spirit to the famous coupon-
collector’s problem.

3.1 Analysis of Protocol I
We begin our analysis of the protocol by showing the num-

ber of blocks that are transmitted over one session.

Lemma 3.1. Exactly n
q

of the blocks in the region are sent
to the peer in one session.

Proof. All blocks that are sent to the peer have an ad-
dress (a1, . . . , ad) for which

Pd
i=1 si ·ai attains some value in

the field Fq. The number of addresses that give each value
is the same—each value defines a similar but parallel hy-
perplane, and each hyperplane covers 1/q of all addresses.
Since we select n values without repetition, we cover an n/q
fraction.

We now present our main result: if the values of n, q in
the protocol are set correctly, rational peers will only access
a seed once per region, and will trade for the rest of the
blocks in that region.

Theorem 3.2. A rational peer that is offered a fraction
n
q
≥ Cup

Cdl+Cup
of the region according to Protocol I will prefer

to trade the rest of the blocks with other peers, rather than
downloading again from a seed.

The theorem implies that any rational peer can be incen-
tivized to upload (during trade) a portion that is equal to
1 − n

q
of the file. For example, if Cdl = Cup, peers can be

made to upload one half of the file.

Proof. First, we denote by k the number of blocks being
sent at every phase by the seed:

k =
n

q
·m (1)

In order to prove the theorem, we shall require the follow-
ing lemma regarding the number of blocks that collide in
expectation:

Lemma 3.3. A peer that downloads pieces of the same re-

gion twice from some seed, will have in expectation k2

m
col-

lisions.

The lemma will be proven below.
The cost of getting k blocks from a seed, and then trading

for the rest, is:

Cost1 = k · Cdl + (m− k) · (Cup + Cdl)

= m · Cdl + (m− k) · Cup (2)

According to Lemma 3.3, when a peer downloads twice from

a seed the expected number of collisions is k2

m
. Therefore,

the expected cost of downloading twice and then trading to
obtain the rest is:

Cost2 = 2k · Cdl +

„
m− 2 · k +

k2

m

«
· (Cup + Cdl) (3)

The difference in costs is:

Cost2 − Cost1 =
k2

m
· Cdl +

„
k2

m
− k

«
· Cup (4)

For this difference to be positive, we must have:

k · Cdl + k · Cup −m · Cup > 0 (5)

k >
Cup

Cdl + Cup
·m (6)

It remains to prove the lemma:

Proof of Lemma 3.3. A peer that has already down-
loaded once from a seed has exactly m · n

q
blocks from the

region. When it downloads pieces of this region from some
seed a second time, a vector ~s and a set of n values V als are
selected to define the slices of the file it gets. For a given
choice of ~s, the file is partitioned into equal-sized slices de-
fined by hyperplanes of the form ~s·~a = b. Since we are select-
ing the set V als uniformly, each slice has the same chance
of getting selected: n

q
. Let gb be the number of blocks that

have already been obtained from slice b. We know thatX
b∈Fq

gb = m · n
q

(7)

The expected number of blocks that will be downloaded
twice is then: X

b∈Fq

n

q
· gb = m ·

„
n

q

«2

=
k2

m
(8)

3.2 Stronger Properties of Protocol I
Protocol I relies on the random selection of hyperplanes

and on the intersection between them to show that there
are enough missing blocks after two sessions. In fact, a
stronger property holds. Even after multiple sessions with
seeds, there is a high probability that blocks will still be
missing.

Theorem 3.4. If m is large, then any peer that has ac-
cessed a seed t times, where t < d/2, will have exactly

m ·
“

q−n
q

”t

missing blocks with probability approaching 1.

The proof is given below.
The theorem implies that peers who diverge from the pro-

tocol and try to download solely from seeds will not be suc-
cessful even after multiple sessions (in which they download
quite a few blocks). The reason that the theorem holds is
because randomly selected vectors are highly likely to be
independent. We first show the following lemma:

Lemma 3.5. If a seed is accessed t < d/2 times, the vec-
tors ~s1, ~s2, . . . , ~st that are chosen at different times during
phase 2 of the protocol, are linearly independent with proba-
bility approaching 1.

Proof. The vectors will be linearly dependent only if at
some point a vector ~si is selected from the span of the previ-
ous vectors. If this never happens, they will be independent.

Let us assume that the vectors ~s1, . . . , ~si−1 are indepen-
dent. Since we are dealing with a vector space over Fq,
there are qi−1 different linear combinations of these vectors,
that give qi−1 different vectors from which a bad value of
~si could be selected. Since we select vectors from the entire
space excluding the vector ~0 (which is also one of the linear
combinations that were counted), we get that the chance of

a bad selection is qi−1−1

qd−1
.

Since selections of vectors at different sessions are inde-
pendent, we conclude that the probability of getting t inde-

pendent vectors is

Pr

„
~s1, . . . , ~st are
independent

«
=

tY
i=1

„
1− qi−1 − 1

qd − 1

«

>

„
1− qt−1 − 1

qd − 1

«t

>

„
1− qt−1

qd−1

«t

(9)

= (1− qt−d)t > (1− q−d/2)d/2

Remember that d was defined to fulfill m = qd, so if m is
large enough, d is also quite large. Notice in this case that
the above bound goes to 1:3

∀q ≥ 2 lim
d→∞

“
1− q−d/2

”d/2

= 1 (10)

Armed with Lemma 3.5, we now proceed with the proof
of the theorem.

Proof of Theorem 3.4. According to the lemma, with
high probability the vectors ~s1, . . . , ~st that were selected at
each stage of the protocol are independent. We denote by
V alsi the complementary set of values to the set V alsi that
was selected in the i’th execution of the protocol.

V alsi = {b ∈ Fq : b /∈ V alsi}

The set of addresses that were not covered at any stage of
the protocol is the set for which the following holds:

∀i ∈ {1, . . . , t} ~si · ~a ∈ V alsi (11)

Note that if we select just a single value bi ∈ V alsi at every
execution, the linear equations

∀i ∈ {1, . . . , t} ~si · ~a = bi (12)

have exactly m
qt solutions. This is because we assumed the

vectors ~si are independent, and the system of equations can
be described succinctly with a matrix S (whose rows are the
vectors ~si) of rank t:

S · ~a = ~b (13)

However, we do not have just a single set of values b1, . . . , bt

but rather (q − n)t different combinations of values that
can be selected. Each selection gives us different equations
with a new set of solutions. The addresses that satisfy the
equations for each selection are disjoint (for each different
selection there exists some linear equation that differentiates
among the solutions). We therefore have a total of

m

qt
· (q − n)t (14)

different addresses of blocks that were not sent out at any
stage.

From the proof of the theorem we can see that the chances
of successfully selecting a set of independent vectors in-
creases if the set is smaller (naturally, two random vectors
have a higher chance of being independent than three or
more). A further improvement is obtained when the num-
ber of blocks is enlarged. The next example shows that the
theorem above gives useful probabilities even for typical file
sizes that are used today, and not just in the limit.

3Example 1 shows that this bound is quite close to 1 even
for relatively small values of d, m.

Example 1. A file of size 224 bytes (16 megabytes) is
being shared; the file can be divided into 16 regions. Each
region contains 1024 blocks each of 1024 bytes (r = 16, m =
1024). Now assume that each seed wishes to donate exactly
1
2

of the file, so we select n = 1, q = 2. A seed then uploads

half a megabyte in each session. Since there are 210 blocks
per region, each block has a 10-bit address (in base 2) within
the region (d = 10). A peer that accesses some seed 5 times
will have gotten 5 independent vectors ~si with a probability
of exactly 0.9747. If this event does occur, that peer will
be missing exactly 1/2 of the region after accessing the seed
once, 1/4 after accessing it twice, 1/8 after the third time,
and so on. Still, at every stage the peer downloads exactly
half a region, and so his download efficiency decreases with
time. Note that the probabilities stated in this example could
be further improved. This can be done by making each block
smaller, and thus increasing the number of blocks per region.

Notice that Theorem 3.4 gives an exact number of missing
blocks with high probability, while Lemma 3.3 gives guar-
antees of an expected number of collisions (even if not all
vectors are independent, we still have many expected colli-
sions).

4. AN IMPROVED PROTOCOL
The robustness of a peer-to-peer system depends heavily

on the availability of the entire file even in cases where all
seeds have vanished. From Theorem 3.4 we know that the
number of missing blocks from the previous transmissions of
a seed decreases exponentially. That is, our previous pro-
tocol sends out a full copy of any given region only after
Θ (m · ln (m)) blocks from that region have been uploaded
(in expectation). A full copy of the region is thus quite likely
to be missing in case all seeds fail and may thus never be
completely obtained by the peers, especially if the number
of blocks is large, as we have previously required.

Our second protocol aims to increase the availability of
the entire file by judiciously uploading parts of the region
that are missing, while still not allowing a single downloader
to obtain the entire region from seeds at a low cost. The mo-
tivating idea behind this improvement is that it is enough
that the set of vectors ~si that is selected during different
sessions are pairwise independent (rather than independent
as a group). That way, any two sets of blocks downloaded
from seeds will have at least some guaranteed number of
collisions. If this number of collisions is enough to discour-
age a peer from accessing seeds twice, then it will certainly
discourage more attempts.

The protocol will randomly select a small linear subspace
U ⊂ V of dimension 3. A group of pairwise independent
vectors S ⊂ U will be constructed and used to decide which
blocks are sent to peers in consecutive sessions. We will
show that:
1. If all addresses in U are covered by hyperplanes deter-
mined using S alone, then all addresses in V are covered.
2. There are enough vectors in S to cover all addresses in
the subspace U .
3. The number of sessions required to cover a single region
is dramatically decreased.
4. Similarly to the previous simpler protocol, a peer that
attempts to access the seed twice for the same region will
download at a higher cost.

Because the subspace U is randomly selected, a peer that

downloads twice from different seeds will most likely en-
counter addresses that were determined according to inde-
pendent vectors from non-overlapping subspaces, i.e., it will
not gain a downloaded segment without collisions.

The protocol again operates in sessions, although this time
sessions will not be entirely independent from one another.

Protocol II:
Region Initialization:
1. Randomly and uniformly select 3 independent vectors
~v1, ~v2, ~v3 ∈ V \ {~0}. Let U be the linear subspace U =
span{~v1, ~v2, ~v3}.
2. Select a group of vectors S ⊂ U such that S is a maximal
group of pairwise independent vectors.
3. Set C = U to be the set of addresses from U that have
yet to be sent to any seed.

During the i’th time in which a certain region is being re-
quested, do the following:
Session Actions:
1. Randomly and uniformly select a vector ~si ∈ S and re-
move it from the group.
2. Select n values V als = {b1, . . . , bn} such that bi ∈ Fq

without repetitions, and such that the number of uncovered
elements in ~a ∈ C for which ~si · ~a ∈ V als is maximized. If
there are several possible choices, randomize among them.
3. Send to the peer all blocks in the requested region that
have an address ~a for which ~si · ~a ∈ V als.
4. Remove the newly covered block addresses from C. If C
is empty, repeat the initialization for the region.

4.1 Analysis of Protocol II
We now prove the protocol’s properties. The next lemma

shows that it is enough to check that we cover all block
addresses in U ; the remaining addresses will also be covered.

Lemma 4.1. Let V be a vector space over Fq. Let U ⊂ V
be a subspace of V . If block addresses are selected using
hyperplanes of the form defined by ~si ·~a = bi where all vectors
~si are from U , and all addresses in U have been covered by
some hyperplane, then the entire vector space V has been
covered by these hyperplanes.

Proof. Let us assume to the contrary that there exists
some ~v ∈ V that has not been covered by any hyperplane.
Let ~u ∈ U be the projection of v on U :

(~v − ~u) ⊥ U (15)

Since ~u is in U , it has been covered by some hyperplane that
is defined by ~s, b. We shall now show that this hyperplane
also covers v:

~s · ~v = ~s · (~v − ~u) + ~s · ~u = 0 + b = b (16)

which implies that v is indeed on the hyperplane.

The next lemma gives some idea of the number of pairwise
independent vectors that we can use:

Lemma 4.2. The vector space U of dimension d over Fq

contains a set S of pairwise independent vectors such that

|S| = qd−1
q−1

Proof. We prove the lemma by induction on d. The

base case will be d = 1. In this case qd−1
q−1

= 1 and the set

that contains only one (non-zero) vector is trivially pairwise
independent (in fact, in dimension 1 this is only a scalar).

Now, we will assume that the lemma is correct up to
d = d′ − 1 for some d′ ≥ 2 and show how to extend the
proof to the case d = d′. Let Sd′−1 be a set of pairwise
independent vectors of dimension (d′ − 1). We know that

|Sd′−1| = qd′−1−1
q−1

.
We construct Sd′ by extending the vectors in Sd′−1 with

an extra coordinate. We denote by (b, ~v) the vector that
has b in the first coordinate and the values of vector v in
coordinates 2 to d′. We then define:

Sd′ =
n

(b, ~v) : b ∈ Fq, ~v ∈ Sd′−1

o
∪ {(1,~0)} (17)

Note that the size of the set Sd′ is as required:

|Sd′ | = q · |Sd′−1|+ 1 =
qd′ − 1

q − 1
(18)

It now remains to show that every pair of vectors in Sd′ is
linearly independent. Let ~v1, ~v2 be a pair of vectors from Sd′

such that ~v1 6= ~v2. There are 3 cases. If the pair consists of 2
vectors that have different non-zero values in coordinates 2
to d′ then the linear independence is derived from the linear
independence of every pair of vectors in Sd′−1. If one of the

vectors is (1,~0), then it only linearly depends on vectors of

the form (b,~0) for some b ∈ Fq which are not present in the
set. The third case is when both vectors are identical in
coordinates 2 through d (some of which must be non-zero).
In this case, the only linear combination that would have a
chance to demonstrate dependence would have to be

b · ~v1 + (−b) · ~v2 (19)

for some b ∈ Fq. However, the first coordinate of the vec-
tors must be different, which means this combination cannot
work (the result will be non-zero). The set therefore contains
pairwise independent vectors only.

We now show that the number of unsent blocks whose
addresses are in U is reduced quickly.

Lemma 4.3. For a given seed, and a given region, the
number of unsent blocks from the subspace U is reduced at
least by a factor of q−n

q
in every session in which blocks from

that region are sent.

Proof. When a vector ~si is selected during session i, it
defines a partition on the space of all addresses into hyper-
planes of the form ~si · ~a = b for different values of b ∈ Fq.
Each of these hyperplanes contains exactly 1/q of all ad-
dresses, and together they cover the entire space. Therefore,
when selecting n such hyperplanes (without repetitions) it is
possible to cover at least n/q out of the entire group of un-
covered addresses that is contained within the space. Since
the protocol maximizes the number of covered addresses in
U , we are left with less than q−n

n
uncovered ones.

Finally, we can prove that the protocol will successfully
send out all blocks in the region quickly:

Theorem 4.4. Each seed that acts according to Protocol
II sends out a full copy of the region requested in under
q
n

3 · ln(q) + 1 sessions.

Proof. According to Lemma 4.3 the number of uncov-
ered addresses in U is reduced by at least a factor of q−n

q
at

every step. There are q3 different vectors in U , and so the
number of sessions to cover U is bounded from above by:

Num Sessions ≤
ln
`
q3
´

ln
“

q
q−n

” + 1 = (20)

3 · ln (q)

− ln
“

1− n
q

” + 1 =
q · 3 · ln (q)

− ln
““

1− n
q

”q” + 1 ≤ (21)

q

n
· 3 · ln(q) + 1 (22)

where the last transition is due to the fact that„
1− n

q

«q

≤ e−n (23)

Note that we have used dim(U) = 3 for which we have
enough pairwise independent vectors as per Lemma 4.2:

∀q ≥ 2 ∀q > n ≥ 1 3
q

n
· ln(q) + 1 <

q3 − 1

q − 1
(24)

which implies that the protocol will not run out of pairwise
independent vectors from the set S before covering all ad-
dresses in U . From Lemma 4.1 we learn that once this has
happened, we also have covered the entire region.

Combining Theorem 4.4 with the fact that m · n
q

blocks
are sent in every session gives us a total of fewer than m ·
(3 · ln(q) + 1) blocks that need to be sent by a seed to get
an entire copy out. This is a significant improvement over
the number of transmitted blocks in Protocol I: Θ(m ln(m)),
since usually m >> q.

Still, peers do not gain from accessing seeds twice because
they have just as many missing blocks as in Lemma 3.3:

Lemma 4.5. A peer that contacts any of the seeds for 2

sessions will have with high probability exactly
“

q−n
q

”2

·m
missing blocks from the region.

The proof is similar to that of Lemma 3.3. Notice that if
the peer accessed the same seed twice in sessions that did
not have an initialization action between them, then surely
the pieces of the region that the peer got were determined
using two independent vectors. On the other hand, if an
initialization did occur, or if the peer accessed two different
seeds, then the two vectors that were selected are in fact
independent with high probability (as in Theorem 3.4) which
implies that they had some blocks in common.

The following example demonstrates Protocol II, and also
shows that in some cases the construction in Theorem 4.4 is
not tight, and it may be sufficient to work with a subspace
U of dimension 2.

Example 2. Let us assume that the file being shared con-
tains 24 blocks per region.4 Seeds wish to donate half of
the file to peers (q = 2, n = 1, d = 4). For simplic-
ity, let us assume that the vectors (1, 0, 0, 0) and (0, 1, 0, 0)
were randomly selected to span the subspace U by some seed
for some arbitrary region. The following set is a maxi-
mal pairwise independent set of vectors in that subspace:
S = {(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)}
4This is just to keep the example simple. The number of
blocks would usually be much larger.

The first time the region is requested by some peer, a value
of b = 1 is selected by chance as the offset of the hyperplane,
and addresses matching (1, 0, 0, 0) · ~a = 1 are sent. The
second time blocks that match (0, 1, 0, 0) · ~a = 0 are sent
(with b = 0 that is arbitrarily selected).

At this point, only one address in U has been left uncov-
ered: the address for which a1 = 0, a2 = 1. Therefore,
the third time the region is requested, with regard to the
third vector (1, 1, 0, 0) only one value of b covers any of the
unsent blocks: b = 1. So blocks with addresses matching
(1, 1, 0, 0) · ~a = 1 are sent.

Note that at every session the seed transmits n/q = 1/2
of the blocks in the region, and that after only 3 sessions,
the entire region has been transmitted. This is only slightly
slower than transmitting the entire region without using the
protocol (which would take the equivalent of two sessions).

5. FAIR TRADING AMONG PEERS
We previously assumed that peers can trade blocks in a

1-to-1 ratio and that no peer can manipulate the protocol to
improve this ratio. The strategy of sending out a block only
after receiving one is deficient in several ways. First, it is too
slow, since a peer has to wait to receive a full block before
it can start transmitting one in return. Furthermore, it is
unclear who sends the first block. If a block of data is sent
by one peer, and the other peer does not upload in return,
then he has managed to gain a block without uploading and
can repeat this process to gain more blocks from other peers
(possibly under a new identity). Here, we show that there
exists a different strategy for trading blocks that guarantees
a good trading ratio without impeding the speed of transfer.

We claim that the following strategy achieves these goals:
1. In the first round, send one block of junk.
2. At every consecutive round, send the other peer a new
block from the file but only if he has sent more than 9/10
of the blocks you have sent him, and you did not send 100
blocks more than he has.

A similar strategy has been suggested by [11] without the
initial upload of junk data. With the initial upload of junk
data, a peer that drops the connection early is at a disad-
vantage. If it has sent junk data, it has already expended
effort, and dropping the link will only mean expending this
effort again to establish a connection later. If it has not sent
any data, then all it will receive is the initial junk block from
the other peer—which is worthless.

As the interaction between peers progresses, it is less and
less beneficial to drop the connection, as the price of estab-
lishing a new link with some other peer is large compared to
the current overhead of trading data. The restriction on a
difference of 100 blocks implies that as the interaction goes
on, the trade ratio approaches 1-to-1.

5.1 Additional Improvements
Here we discuss several other modifications that augment

the protocols we presented above.

Rarest-first dissemination of regions: The BitTorrent
protocol attempts to improve the robustness of the system
by first distributing rare blocks. This helps in maintaining
a full copy of the file in the network even if all seeds are
down, and in speeding up the download (some peers may
be waiting for the rare blocks alone after easily obtaining all
commonly found ones). A similar approach can be combined
with our protocol as well (although in our case regions play

the role of blocks). Seeds should try to distribute full copies
of regions that have not been fully sent out to the popula-
tion of downloaders. Peers should attempt to complete rare
regions with a higher priority than commonly found ones.

Thwarting connection dropping: A possible manipu-
lation by peers that wish to download a larger portion of
the file from seeds is to drop the connection to the seed
if they ever realize that they are being given a block they
already possess. That way, the peer can avoid the added
cost of downloading useless information. To prevent peers
from taking this approach, seeds that are interacting with a
new peer for the first time should deterministically send the
few first blocks in a region. Thus, if the seed is contacting
them for a second time regarding that region, it will suffer
a loss by having to always download a portion of the region
it already possesses. Note however, that honest peers that
only access the seed once are not harmed, since they do not
possess those blocks to begin with.

Lowering the seed donation ratio: The idea of a deter-
ministic initial donation by seeds can also be used to reduce
the amount of donated effort by seeds even below the thresh-
old given in Theorem 3.2. Setting a constant part of the
region that is deterministically (or with higher probability)
sent to requesting peers increases the number of redundant
blocks a misbehaving peer will download, and makes it less
worthwhile to access peers several times. The following ex-
ample demonstrates this:

Example 3. Let us assume that seeds donate the first k1

blocks from the region deterministically, and then randomly
select k2 blocks from the remaining m−k1 blocks in the region
(according to one of the protocols we have presented). The
expected cost incurred by a peer that downloads only once
from a seed and then trades for the rest of the file is then:

C1 = (k1 + k2) · Cdl + (m− k1 − k2) · (Cdl + Cup) (25)

A peer that downloads twice pays 2(k1 +k2) ·Cdl for down-

loads, and has k1+ (k2)2

m−k1
redundant blocks that he downloads

(in expectation). He thus has an expected cost of:

C2 = 2(k1 + k2) · Cdl+

+

„
m− k1 − 2k2 +

(k2)2

m− k1

«
· (Cdl + Cup) (26)

The difference in costs is

C2−C1 = (k1+k2)·Cdl+

„
(k2)2

m− k1
− k2

«
·(Cdl+Cup) (27)

For the sake of simplicity, let us assume that Cup = Cdl.
The difference in costs is then

C2 − C1 =

„
k1 − k2 + 2

(k2)2

m− k1

«
· Cdl (28)

Now, notice that we can set k1 = k2 for example, and
always get a positive difference in costs:

C2 − C1 = 2
(k2)2

m− k1
· Cdl (29)

A seed can therefore choose to upload only one quarter of
the file, by selecting k1 = k2 = m

8
. This naturally comes

at a cost to the robustness of the system, since half of the
donation of seeds (the k1 blocks that are sent deterministi-
cally) goes towards blocks that are very frequent, instead of
promoting diversity and sending blocks that are more rare.

Proof of effort: If peers have only a very small piece of a
region missing it may be hard for them to obtain it. Seeds
can give out this small missing piece, and in return request
information to be sent to them from the downloading peer.
This sent information (which can be junk, and does not have
to be part of the file) will impose a small cost on the peer
that will prevent him from downloading entire regions in
this manner without incurring an appropriate cost. This
mechanism should be used sparingly, as it wastes bandwidth
for a transmission that is not really beneficial.

6. DISCUSSION AND FUTURE WORK
We have presented a file-sharing protocol that adds in-

centives to increase the level of donation by downloading
peers. In particular, our protocol is resistant to the Large-
View exploit [15], since peers cannot gain a higher utility by
connecting to many seeds—each seed gives out information
somewhat randomly, and so sessions with many seeds are
equivalent to sessions with only one seed. We have further
shown how the protocol could be modified to increase the
robustness of the system when the number of seeds is low.

It is interesting to note that when the number of seeds is
small (e.g., when the download starts and only a single seed
exists in the system) then the problem of incentives in the
regular BitTorrent protocol is not too pressing. Since the
download bandwidth provided by seeds at this point is low,
peers who trade blocks get more downloads, and selfish peers
have a harder time competing for the scarce bandwidth of
the seeds. Therefore, uploading peers obtain a copy of the
file much faster—almost as soon as a single copy of the file
is uploaded. As the number of seeds grows, free-riders can
again download quickly. We therefore suggest a hybrid ap-
proach: if the system is deemed to be in a “risky” state, then
seeds should allow requests for specific blocks. However, if
there are plenty of seeds, our protocol would hurt free riders
and can be used without worrying about robustness. This
hybrid approach is common in several BitTorrent clients,
e.g., those that use the Super-Seeding mechanism when the
number of seeds is low, and resume their regular behavior
after the number increases.

Another related challenge that still remains is to make
the protocol more secure against malicious activity. Mod-
ern peer-to-peer protocols usually employ some method of
verification (usually via hashing) to check blocks they have
obtained, so that blocks that contain errors or have been
planted by a malicious agent are not propagated to the en-
tire system. This presents a challenge, since peers may be
holding only partial slices of a region, which may be harder
to verify (and we would not want to propagate even this
partial information in case it is wrong). A similar challenge
exists in file-sharing systems that use network coding, and
some solutions do exist (e.g., those mentioned briefly in [8]).

Seeds in our model were considered to be agents who do-
nate without expecting anything in return. Often, someone
that is uploading one file would be interested in downloading
another. The question of how to design systems that con-
sider more than one file at a time naturally arises, especially
in a protocol that does not depend on a monetary or repu-
tation system. Perhaps trading pieces of different files can
prove to be effective, provided that trading partners that
can form beneficial deals are found and matched efficiently.

Acknowledgment
Both authors were supported in part by Israel Science Foun-
dation grant #898/05.

7. REFERENCES
[1] E. Adar and B. A. Huberman. Free riding on gnutella.

First Monday, September 2000.

[2] A. Cheng and E. Friedman. Sybilproof reputation
mechanisms. In P2PECON ’05: Proceedings of the
2005 Workshop on Economics of Peer-to-Peer
Systems, pages 128–132, NY, 2005. ACM.

[3] B. Cohen. Incentives build robustness in BitTorrent.
In The 1st Workshop on the Economics of
Peer-to-Peer Systems, Berkeley, California, June 2003.

[4] M. Feldman and J. Chuang. Overcoming free-riding
behavior in peer-to-peer systems. SIGecom Exch.,
5(4):41–50, 2005.

[5] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust
incentive techniques for peer-to-peer networks. In EC
’04: Proceedings of the 5th ACM Conference on
Electronic Commerce, pages 102–111, NY, 2004. ACM.

[6] M. Feldman, C. Papadimitriou, J. Chuang, and
I. Stoica. Free-riding and whitewashing in peer-to-peer
systems. In Proceedings of the ACM SIGCOMM
Workshop on Practice and Theory of Incentives in
Networked Systems, pages 228–236, NY, 2004. ACM.

[7] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and
D. Towsley. Modeling peer-peer file sharing systems.
In INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and
Communications Societies. IEEE, volume 3, pages
2188–2198, March 2003.

[8] C. Gkantsidis and P. R. Rodriguez. Network coding
for large scale content distribution. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings
IEEE, volume 4, pages 2235–2245 vol. 4, 2005.

[9] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives
for sharing in peer-to-peer networks. In EC ’01:
Proceedings of the 3rd ACM conference on Electronic
Commerce, pages 264–267, NY, 2001. ACM.

[10] Ipoque. Internet study 2007, October 2007.
www.ipoque.com/media/internet studies/internet study 2007.

[11] S. Jun and M. Ahamad. Incentives in BitTorrent
induce free riding. In P2PECON ’05: Proceeding of
the 2005 ACM SIGCOMM workshop on Economics of
peer-to-peer systems, pages 116–121, NY, 2005. ACM.

[12] D. Levin, K. LaCurts, N. Spring, and
B. Bhattacharjee. BitTorrent is an auction: analyzing
and improving BitTorrent’s incentives. SIGCOMM
Comput. Commun. Rev., 38(4):243–254, 2008.

[13] M. Li, J. Yu, and J. Wu. Free-riding on BitTorrent-like
peer-to-peer file sharing systems: Modeling analysis
and improvement. IEEE Transactions on Parallel and
Distributed Systems, September 2007.

[14] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer.
Free riding in BitTorrent is cheap. In 5th Workshop on
Hot Topics in Networks, Irvine, CA, US, Nov. 2006.

[15] M. Sirivianos, J. H. Park, R. Chen, and X. Yang.
Free-riding in BitTorrent with the large view exploit.
In 6th Int. Workshop on Peer-to-Peer Systems, 2007.

