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Abstract

We study the computational aspects of information elicitation mech-

anisms in which a principal attempts to elicit the private information of

other agents using a carefully selected payment scheme based on proper

scoring rules. Scoring rules, like many other mechanisms set in a prob-

abilistic environment, assume that all participating agents share some

common belief about the underlying probability of events. In real-life

situations however, the underlying distributions are not known precisely,

and small differences in beliefs of agents about these distributions may

alter their behavior under the prescribed mechanism.

We examine two related models for the problem. The first model

assumes that agents have a similar notion of the probabilities of events,

and we show that this approach leads to efficient design algorithms that

produce mechanisms which are robust to small changes in the beliefs of

agents.

In the second model we provide the designer with a more precise and

discrete set of alternative beliefs that the seller of information may hold.

We show that construction of an optimal mechanism in that case is a

computationally hard problem, which is even hard to approximate up to

any constant. For this model, we provide two very different exponential-

time algorithms for the design problem that have different asymptotic

running times. Each algorithm has a different set of cases for which it is

most suitable. Finally, we examine elicitation mechanisms that elicit the

confidence rating of the seller regarding its information.

1 Introduction

The old aphorism “Knowledge is power”, stated by Sir Francis Bacon some four
centuries ago, is more relevant now than ever. The need to make informed
choices causes correct and accurate information to be a desired and highly-
valued commodity. As intelligent automated agents take on more tasks, and
need to act independently within large systems, their need to buy and sell
information increases.
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Information in stochastic environments is hard to evaluate, and may be easily
faked. Any novice can give a prediction regarding the behavior of tomorrow’s
stock market; by pure chance, those predictions may outperform those of even
the most informed financial wizard.

The question that naturally arises is how to pay for information that can
only be verified with some probability. This is especially important in cases
where in order to obtain the information, the seller itself has to invest some
effort. The payments made by the buyer must be carefully set so as to induce
the seller to invest the effort into acquiring the true information. Otherwise,
the seller might be tempted to avoid the cost of obtaining the information, and
simply make something up.

Most current real-world information trading is done with reliable sources
of information over an extended period of time (for example, buying the same
newspaper every day). This repeated form of interaction helps motivate the
provider of information to supply accurate and reliable reports (not unlike
the “shadow of the future” motivating cooperation in the iterated Prisoner’s
Dilemma [1]). The potential for additional interactions in the future makes the
information provider’s reputation valuable, and motivates the seller to provide
accurate pieces of information.

However, advances in technology and infrastructure such as the internet have
made a multitude of information sources readily available at a moment’s notice
(via web services [2], for example). These tend to be smaller and much more
specialized information providers, which can accurately report about a small
niche in which they specialize. Interactions with these sources are often not
repeated. Since there is no central authority that governs these sources, and no
single authority can vouch for the reliability of the information they provide,
it is left up to the buyer of information to sift through the information that is
available and decide what to use.1

One approach to the problem of source reliability is the use of reputation sys-
tems [3]. These systems are mechanisms through which agents provide feedback
about the quality of service they received from a specific vendor; this feedback
is later viewed by other potential clients. Unfortunately, solid non-manipulable
reputation systems are hard to create, and most service providers on the internet
are not currently rated by any such system.

We are therefore interested in other ways of obtaining correct information
from a previously unknown information source. We will assume that there is
no repeated interaction, and the incentive for providing good service must exist
within every transaction, on its own. The overall approach we take in this
work is that of mechanism design. We shall attempt to create the incentives for
delivering accurate reports by providing payments to the agents in a way that
will guarantee them a higher payment when they are behaving well, i.e., when
they provide correct information.

1As an example, consider querying some foreign weather service before traveling abroad.
One will only know if the weather prediction they supplied is good after arriving at the
destination. One may not be likely to require the services of that supplier again.
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We shall assume that agents are acting rationally and that they are not
intentionally trying to sabotage the buyer—any use the buyer may make of
the purchased information does not affect the seller. Instead, we adopt the
assumption that information providers are only interested in receiving a higher
payment and doing the least amount of work. A truly malicious agent that is
trying to intentionally deceive, regardless of monetary loss, will not give good
information regardless of the mechanism applied, and must therefore be dealt
with in other ways. Such agents are often handled using security and encryption
tools that we shall not discuss here.

1.1 An Example Scenario for Information Elicitation

There are many possible scenarios for information exchange, such as reviewing
papers, obtaining predictions about the stock market, buying weather informa-
tion, and so on. We present here one example to which we will refer throughout
the paper.

Let us assume that Bob owns a car, and wants to decide if he should upgrade
his emergency road service coverage. For this purpose, he wants to evaluate the
mechanical condition of the car; this will help him predict the car’s chances of
breaking down in the near future, and will help him decide whether the extra
insurance is worthwhile. Since Bob knows very little about cars, he turns to an
independent expert, a mechanic named Alice, and asks her to take a look under
the hood.

Knowing that Bob is not an expert, Alice can decide not to invest any effort
in checking the car, and instead make up some list of malfunctions that threaten
to disable the car at any moment, or alternatively she may just say that the
car is fine (she has no vested interest in whether Bob upgrades his coverage).
How will Bob know that he was told the truth? Even if Alice invests effort in
checking the car and says that the car is fine, an accidental malfunction could
disable it the next day (probably making Bob feel cheated).

To ensure trust, Alice can make her wages conditioned on the future: if
Alice says the car is in poor shape, Bob will get a refund if his car does not
break down within the next six months, while if Alice reports that the car is
fine, Bob gets a refund if the car does break down within six months. What are
the exact payments that will ensure that Alice does her job? There is naturally
some probability that Alice will have to refund some of Bob’s money even if she
checked the car and reported the truth to Bob.

There might also be a situation in which Alice knowingly lies to Bob. If
the chances that a car in good condition will break down are too high, Alice
could decide to say the car is in bad condition, and thus ensure that she does not
refund Bob if his car breaks down (even though it was indeed in good condition).

1.2 Information Elicitation vs. Preference Elicitation

Mechanism design [4, 5] is the study of how to set the rules and protocols of
interaction among agents in a way that will encourage rational agents to behave
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in a prescribed way that leads to a desired outcome. The mechanism design
literature provides many successful examples of mechanisms that “battle” the
agent’s self-interest and successfully achieve outcomes that are more socially
oriented, or are beneficial to the designing agent in some way.

Many times, in order to decide on an outcome, a mechanism tries to elicit the
preferences of participating agents. Information elicitation scenarios are slightly
different from preference elicitation as it is usually understood in the mechanism
design literature. In preference elicitation scenarios, information revelation is
most often used as a means to an end (i.e., to arrive at some desirable outcome).
For example, an auctioneer may want to know the valuations potential buyers
have for an expensive painting so that he can award this painting to the bidder
that values it highest, and in the process make more money.

In pure information elicitation, the information being revealed is the point
of the transaction. The seller is assumed to only be concerned with its payment,
not any other consequence of providing one piece of information or another. In
this sense, information elicitation can be seen as a subproblem of mechanism
design, where the mechanism has no outcome to determine.2 This limitation
leaves the mechanism with fewer degrees of freedom.

Since information elicitation scenarios are all about trading information, it
may be important to the participants not to give out any information for free,
and to keep all their extra knowledge about the world secret. Later in this
article we shall examine scenarios where the seller and buyer of information
possess different beliefs about the world. In classic mechanism design, this
problem is often addressed by direct revelation mechanisms that require agents
to divulge all needed information, including their probability beliefs (i.e., type).
The mechanism then takes this information into account and acts optimally
on behalf of the agent, eliminating any need to be untruthful. However, in
settings where information is sold, it is unlikely that the seller would be willing
to participate in direct revelation schemes. Since information is the primary
commodity, revealing more of it to the mechanism is unwise,3 and the agent’s
beliefs about probabilities contain extra information.

1.3 Contribution

As computers take on more tasks that require intelligent decisions and reliable
information, and as micro-transactions of information begin to play a larger role
in information trade, establishing the proper incentives for truthfulness becomes
increasingly important. We present here a model for one-shot transactions of
information that can incorporate these incentives, and show how to extend it in
four ways:

1. We show that some mechanisms are more robust to varying beliefs of
agents than other mechanisms. The notion of belief robustness that we

2This is similar to the classification of elections as mechanisms where no money changes
hands, and only an outcome is selected.

3It remains unwise even if the mechanism is handled by a trusted third party, since revealing
extra information would be reflected in payments made by the buyer.
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define is applicable to many real-world situations where there is no com-
mon knowledge between the seller and buyer of information, but effective
mechanisms can still be constructed. We present efficient algorithms for
finding such mechanisms.

2. We show that if the selling agent has additional knowledge about the
state of the world that it is not willing to sell, the design of an optimal
mechanism becomes computationally hard. We present two exponential-
time algorithms for the design problem that exploit different aspects in
the structure of the problem, and achieve different running time profiles.

3. We look at the case where the expert selling information has some un-
certainty regarding its quality, and show how the confidence rating of the
seller can sometimes be elicited along with the information itself.

1.4 Structure of the paper

In the next section we review related work and give a brief overview of some
mathematical and computational background used in the rest of the paper. In
Section 3 we define the basic information elicitation model and explore its basic
properties in the case of one seller. Section 4 then explores a model where agents
do not hold a common view of the world and need to design mechanisms that
are robust against small differences in beliefs. Next, we turn to a scenario where
the seller possesses more knowledge about the probabilities than the buyer does,
and show that designing good mechanisms in this case is often hard. We give
two different algorithms to design such mechanisms that have different running
times. In Section 6 we discuss elicitation of confidence ratings in scenarios where
the seller has some uncertainty about the quality of its information. We present
our conclusions in Section 7.

2 Background

2.1 Related Work

The economic theory of contracts has dealt with principal-agent models in var-
ious forms. Some of the canonical families of models in this field include those
with adverse selection—where an agent is asked to reveal private information
about his type but may give false information. The proper incentives for truth-
telling are set by a well-designed contract. Another well-known family of models
thoroughly explored in economics is that of moral hazard. In these settings, the
agents are asked to take a hidden action (one that is costly for them) that is not
directly visible to the principal. Instead, the principal observes some noisy sig-
nal that is affected by the action. The aim of the contract is then to make sure
that the agents gain more by performing the action. The reader is urged to refer
to [6, 7] for a comprehensive introduction to these models and several of their
variants. Our own work includes elements from both families—hidden action
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to learn the information the buyer is interested in acquiring, and truthfulness
in revealing it. However, we no longer assume that probabilities of events are
common knowledge, but instead treat them as beliefs held by the agents. This
leads among other things to interesting computational questions that are not
often explored within the economic context.

Research in artificial intelligence and on the foundations of probability theory
has considered probabilities as beliefs,4 and several models have been suggested—
for example, probabilities over probabilities [8]. Cases where agents have un-
certainty about the utility functions in the world were examined in [9]. There,
an agent acts according to the “expected expected utility” it foresees as it takes
into consideration its own uncertainty. The truthful elicitation of such beliefs
has also attracted great interest [10, 11, 12] (see Section 2.2 on scoring rules).

The issue of common knowledge and common priors has been studied within
the context of probability theory [13, 14]. Here, the beliefs about beliefs of agents
also play a large role.

There are many natural uses for information elicitation in computer sci-
ence. For example, in reputation systems [15, 16] information is elicited from
agents about their experience with some service provider. This information is
important for agents that will interact with that service provider in the future,
but the reporting agent that has already completed the interaction needs to be
motivated in some other way to reveal the results of its own interaction.

In multi-party computation settings, information is elicited in order to com-
pute some function of the agents’ secrets. Agents are interested in the correct re-
sult of the computation but do not wish to reveal their secret [17], and use cryp-
tographic tools to conceal it. Multi-party computation scenarios where agents
have to invest effort to discover their secrets have also been explored [18, 19]. In
our work we do not assume that agents have reservations about revealing their
secret, only that they wish to maximize their gains. We also do not make the
assumption that the information providers are interested in the product that
will later be generated using their information.

Yet another area in which information elicitation is implemented is polling.
The information market [20, 21] approach has been suggested as a way to gen-
erate more reliable predictions than can be achieved with regular polls. There,
agents buy and sell options that will pay them an amount that is dependent on
the outcome of some event (like some specific candidate winning an election).

A somewhat different sub-field of information elicitation deals with eliciting
information from humans [22, 23]. The challenges here are to model as accu-
rately as possible the desires of people (as utility functions, for example) and
to overcome some of the irrationality that affects human behavior and report-
ing. The reports that these schemes often rely upon can be noisy and even
conflicting.

An economic analysis of information as a trade commodity within large
markets has also been performed. Broker Agents that buy information, filter it,
and then sell the results have been examined in [24]. [25] explores the effects of

4This has led to controversy between Bayesians and Frequentists.
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bundling information goods together.
Another example of the treatment of information elicitation appears in [26],

where a manager in some firm attempts to obtain information from an employee
in a setting where obtaining this information is costly. The manager attempts
to create the incentive for truthful revelation by comparing it with his own
information. The main result in [26] shows that if the worker has some signal
on the information of the manager, it may become a “yes-man” that attempts
to correlate the information it reports with the information of the manager,
instead of reporting truthfully.

The automatic design of general mechanisms has been researched as well.
[27, 28] proposed applying automated mechanism design to specific scenarios as
a way of tailoring the mechanism to the exact problem at hand, and thereby
developing superior mechanisms. Here we propose to do similar things with
information elicitation mechanisms.

In Section 5 we present mechanisms that use partial revelation of infor-
mation. This agenda has also been pursued within preference elicitation set-
tings [29, 30]. There, mechanisms are designed to approximately implement
truth-telling in dominant strategies using constrained optimization techniques
that are similar to our own.

2.2 Strictly Proper Scoring Rules

Scoring rules [10] are used in order to assess and reward a prediction given in
probabilistic form. A score is given to the predicting expert that depends on
the probability distribution the expert specifies, and on the actual event that is
ultimately observed. For a set Ω of possible events and P, a class of probability
measures over them, a scoring rule is then defined as a function of the form:
S : P × Ω → R.

A scoring rule is called strictly proper if the predictor maximizes its expected
score by saying the true probability of the event, and receives a strictly lower
score for any other prediction. That is, when the actual event ω is drawn from
the probability distribution p (which we denote by ω ∼ p) the expected score of
the predictor is higher if it reports p rather than any other distribution q:

Eω∼p[S(p, ω)] ≥ Eω∼p[S(q, ω)] (1)

In the above, equality is achieved iff p = q. [12] show a necessary and suffi-
cient condition for a scoring rule to be strictly proper (see a generalized version
in [11]), which allows easy generation of various proper scoring rules by selecting
a bounded convex function over P. Each such function generates a new scoring
rule.

Several commonly known scoring rules are:

• The spherical scoring rule:

S(p, ω) =
pω

√

∑

ω′∈Ω

pω′
2

(2)
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• The logarithmic scoring rule:

S(p, ω) = log(pω) (3)

• And the quadratic scoring rule:

S(p, ω) = 2pω −
∑

ω′∈Ω

p2

ω′ . (4)

An interesting use of scoring rules within the context of a multiagent reputation
system was suggested by [15], who have modeled the bad behavior of service
providers by a random variable that, with some fixed probability p, determines
whether they will be honest or dishonest in their next transaction. A series
of agents interact with this service provider; each is required to give feedback,
which is interpreted as giving some refined prediction for the value of p. An
agent involved in giving feedback is then rewarded with a scoring rule according
to how well it predicted the feedback signal of the next agent that interacts with
the service provider. This mechanism makes true revelation of the experience
with the service provider a Nash equilibrium. Unavoidably, the mechanism also
has other Nash equilibria that may attract agents. This may be corrected by
relying on some reliable feedback from other sources as well [31].

2.3 Stochastic Programming

Stochastic Programming [32] is a branch of mathematical programming where
the mathematical program’s constraints and target function are not precisely
known. A typical stochastic program formulation consists of a set of parameter-
ized constraints over variables, and a target function to optimize. The program
is then considered in two phases. The first phase involves the determination of
the program’s variables, and in the second phase, the parameters to the problem
are randomly selected from the allowed set. The variables set in the first stage
are then considered within the resulting instantiation of the problem. Therefore
they must be set in a way that will be good for all (or most) possible problem
instances. There are naturally several possible ways to define what constitutes a
good solution to the problem. In this work, we use the conservative formulation
of [33] which requires the assignment of variables to satisfy the constraints of
the program for every possible program instance. For example, if we are given
a program of the form:

min c · x
s.t.

Ax ≥ b

where A is considered to be from an allowed set of parameters A, we shall
require a solution x to the mathematical program to be feasible for all possible
A ∈ A.

This type of linear stochastic program has a convex solution space (it is
the intersection of a convex space for every possible A ∈ A). General convex
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optimization algorithms require a description of the solution space, e.g., via a
separation oracle. A separation oracle is simply a program that is able to tell
if a certain point x is in the solution space, and if it is not, can provide a linear
separator between the set of allowed solutions and x. If an efficient separation
oracle exists, the convex optimization problem can be solved efficiently as well.
An efficient oracle can be constructed for the stochastic optimization problem
above using a linear program solver (see [33] for more details), and thus it is
efficiently solvable.

We shall make use of this formulation later in Section 4. Each instance will
correspond to a different variation in the beliefs held by the participating agents.

3 The Information Elicitation Scenario

The scoring rule literature usually deals with the case in which the predicting
expert is allowed to give a prediction from a continuous range of probabilities.
We look at a different problem: we assume each agent (including the principal,
i.e., the one trying to elicit the information) has access to a privately-owned
random variable that takes a finite number of values only. The discrete values
allow us to tailor the mechanism to the exact scenario at hand without the need
to differentiate between infinitesimally differing cases. Bartered knowledge is
very often presented in a discrete format.5 Finally, aggregating information from
several agents is also much clearer and simpler to do with discrete variables.

Figure 1: The Information Transaction

We assume the buyer wishes to purchase information about the value of a
discrete random variable Xi from each seller i, and that the seller can learn
the value of that variable at a cost ci. To verify the quality of the information

5For example, in the original example from Section 1.1 above, Bob could be interested in
knowing the condition of his car but would not really care for a continuous range of values. The
required information in this case might be given just to make a discrete choice of whether or
not to purchase more insurance. Continuous data can sometimes be made discrete according
to the various actions it implies: if the car is in a condition that is worse than some threshold,
Bob would purchase insurance, otherwise he would not. This defines the discrete information
in which he is interested.
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it purchases, the buyer has access to a random variable Ω. Ω,X1, . . . ,Xn are
presumably not independent variables, and knowledge about the value of one of
them gives some information regarding the value of the others. Using the vari-
able Ω, the buyer can get some idea if the information sold to him was correct.
Without Ω, it would sometimes be impossible to create the necessary incentives
for truthfulness on the part of the sellers. The variable may be redundant in the
case of multiple sellers where information from several sources can be compared
for validation.

We shall denote the probability distribution for Ω,X1, . . . ,Xn by pω,x1,...,xn
=

Pr(Ω = ω,X1 = x1, . . . ,Xn = xn). The values the different variables can take,
as well as the probability distribution pω,x1,...,xn

, and the costs ci are assumed
to be common knowledge. We also assume that agents seek to maximize their
expected gains and that they are risk-neutral.

In our running example, the variable X that Bob wishes to purchase is the
mechanical state of the car, the verification variable Ω is the indicator that
denotes if Bob’s car breaks down within six months of being evaluated, and the
probability distribution Pω,x links these two events. A car in bad condition has
a higher chance of breaking down. The cost c represents the amount of work
Alice has to invest to examine Bob’s car.

The buyer can now design a payment scheme that will determine the pay-
ment it must give to the sellers, based on the information the sellers gave and on
the value of the verification variable Ω. We shall denote the payment to agent
i by ui

ω,x1,...,xn
.

In our example, this payment scheme captures the different payments upon
which Bob and Alice agree. If Alice says the car is fine, Bob will pay her more
if the car does not break down (and may even claim money if it does), while a
different set of payments will apply if Alice says the car is in poor condition.

It is important to stress that the variable Ω must be hidden from the sellers
at the time the transaction is carried out. If the sellers possess too much in-
formation regarding Ω (in addition to what is implied through the information
they sell), they may choose to report a value that best fits the buyer’s signal
instead of the real value they learned.

In this paper we primarily examine the restricted case of a single seller. The
approach we take can be easily extended to multiple sellers.6 A payment scheme
shall be considered proper if it creates the incentive for agents to enter the game,
invest the effort into acquiring their variable, and tell the true value that they
found. These three requirements are defined more precisely below.

6With multiple sellers the mechanism designer has to make a decision regarding the exact
solution concept the mechanism will use. A wide range is available, for example, a dominant
strategy implementation, an iterated dominance implementation, or a Nash equilibrium im-
plementation. Each choice produces different constraints, but all are similar in spirit to the
formulation we present for the single agent. Even more complex mechanisms can be designed
to resist various forms of collusion among multiple sellers.
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3.1 The Requirements from the Mechanism in the Single

Agent Case

In the case of one participating agent with a single variable, we need to satisfy
three types of constraints in order to have a proper mechanism. For convenience,
we drop the index i of the agent and denote by pω,x the probability Pr(Ω =
ω,X = x).

1. Truth Telling. Once an agent knows its variable is x, it must have an
incentive to tell the true value to the principal, rather than any lie x′.

∀x, x′ s.t. x 6= x′
∑

ω

pω,x · (uω,x − uω,x′) > 0 (5)

Remember that pω,x is the probability of what actually occurs, and that
the payment uω,x′ is based only on what the agent reported.

In our example this is the requirement that Alice tells Bob the truth about
the state of the car in the event that she knows it.

2. Individual Rationality. An agent must have a positive expected utility
from participating in the game:

∑

ω,x

pω,x · uω,x > c (6)

This assures us that Alice will want to do business with Bob. If she does
not stand to gain from the transaction (even in expectation), she will
prefer not to deal with Bob at all.

3. Investment. The value of information for the agent must be greater than
the cost of acquiring it. Any guess x′ the agent makes without actually
computing its value must be less profitable (in expectation) than paying
to discover the true value of the variable and revealing it:

∀x′
∑

ω,x

pω,x · uω,x − c >
∑

ω,x

pω,x · uω,x′ (7)

This constraint will ensure that Alice will be better off making an informed
judgment regarding Bob’s car rather than just guessing its mechanical
condition.

Note that all of the above constraints are linear, and can thus be applied
within a linear program to minimize, for example, the expected cost of the
mechanism to the principal:

∑

ω,x

pω,x · uω,x.

Let us demonstrate a proper mechanism using a numeric example:

Example 1. Let us assume that Bob’s car can be in only one of two states:
good working condition or poor working condition, X = {good, poor}, and that
he wishes to find out which state it is in. He then turns to Alice who can invest
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an effort that is equal to $10 to find this out. Bobs wants Alice to tell the truth
so he conditions payments on the event in which the car breaks down (or does
not) in the next 6 months: Ω = {break down, ok}.

The probability distribution, which is assumed to be common knowledge, is:

Car Condition Break Down Probability
good no 0.4
good yes 0.1
poor no 0.3
poor yes 0.2

Note that this distribution implies that the car has an equal probability of
being in good condition or of being in poor condition, and that without knowing
the condition of the car, it has a 0.15 probability of breaking down. Now we
assume that Alice and Bob decided on the following payment scheme:

Reported Condition Break Down Payment
good no $15
good yes $0
poor no $0
poor yes $25

Now, let us check that each one of the constraints is satisfied:

1. Truth Telling. Let us assume that Alice knows the car is in good shape.
The car therefore has a 20% chance of breaking down. If Alice reveals the
truth to Bob, she will get paid $15 with probability 0.8 (the case where
the car does not break down—an expected value of $12). Otherwise, she
may lie and report the car is in poor shape, and get paid only if it breaks
down; that means getting $25 with probability 0.2, which is worse ($5 in
expectation). So in this case, Alice would be better off telling the truth.

The reader may verify that Alice will also want to tell the truth if she knows
the car is in poor condition (a 40% chance of breaking down). In this case,
telling the truth gives her $25 with probability 0.4 (or $10 in expectation)
and lying will give her $15 with probability 0.6 ($9 in expectation), so she
will tell the truth.

2. Individual Rationality. If Alice checks the car and tells the truth, she
is expected to get $9 if the car is in poor shape and $12 if it is in good
shape. Since both events have equal probability, she stands to gain $10.5 in
expectation, which is higher than the effort she needs to invest in checking
the car.

3. Investment. If Alice decides not to invest effort, then she can estimate
the car’s probability of breakdown at 0.15. If she tells Bob the car is in
good shape, she stands to make $15 with 85% probability, which is more
than her expected value if she tells the truth (also because she has to invest
$10 worth of effort in that case). She may therefore decide not to check
the condition of the car, and just tell Bob that it is fine.
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Due to the last constraint being violated, we see that this payment scheme
will probably not elicit the truth from Alice. However, as we shall later prove,
a proper mechanism does exist.

3.2 A Geometric Interpretation for the Truth-Telling Con-

straints

In Section 3.3 we shall see that if the truth-telling constraints are satisfiable,
the payments can be adjusted easily to satisfy the rest of the constraints as well.
We are therefore interested in better understanding these constraints.

A close look at the truth-telling constraints for some x and x′,
∑

ω

pω,x · (uω,x − uω,x′) > 0 (8)

reveals that they seem similar to vector multiplication. In fact, if we define
vectors

~px , (pω1,x . . . pωk,x) (9)

~ux , (uω1,x . . . uωk,x) (10)

we can write the truth-telling constraints in the following form:

∀x 6= x′ ~px · (~ux − ~ux′) > 0. (11)

Using a slightly different notation we can define:

∀x 6= x′ ~vx,x′ , ~ux − ~ux′ , (12)

and write the constraint as:

∀x 6= x′ ~px · ~vx,x′ > 0. (13)

This representation has a geometric interpretation: the vector ~px is required to
be on the positive side of the unbiased hyperplane perpendicular to the vector
~vx,x′ .

It is important to notice that the vectors ~vx,x′ are not independent of each
other, but have the following relationships:

~vx,x′ = −~vx′,x (14)

~vx,x′′ = ~vx,x′ + ~vx′,x′′ (15)

We therefore have a matching requirement to 13 that places the vector ~px′

on the negative side of the hyperplane ~vx,x′ :

∀x 6= x′ ~px′ · ~vx,x′ < 0 (16)

A proper assignment of payments is required to give a linear separation be-
tween the vectors ~px and ~px′ using the hyperplane defined by ~vx,x′ (see Figure 2).
This requirement for linear separation is the basis for many of our results.
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Figure 2: A Linear Separation of vectors ~px and ~px′

3.3 Existence and Properties of Solutions for a Single Agent

There are naturally cases when it is impossible to satisfy the constraints. For
example, if Bob’s car is just as likely to break down no matter what condition
it is in, we cannot expect that Bob will be able to create the incentive for Alice
to tell the truth about her examination of the car. Bob will not be able to tell
(even probabilistically) if she told the truth or not, and no mechanism will help.
When can we be sure that a mechanism will exist?

The following proposition gives a sufficient condition for the existence of a
mechanism in the single agent case:

Proposition 1. If there exist x, x′ ∈ X and α ≥ 0 s.t. x 6= x′ ∀ω pω,x =
α · pω,x′ , then there is no way to satisfy truth-telling constraints for x and x′ at
the same time.

Proof. When looking at the two truth-telling constraints for x, x′ we get (ac-
cording to Equation 5 and Equation 16):

0 <
∑

ω

pω,x · (uω,x − uω,x′) < 0 (17)

which is a contradiction.

We can regard this feasibility condition as a requirement of independence
between the vectors ~px , (pω1,x . . . pωk,x) of any two different x, x′. If the vectors
are dependent, they cannot be linearly separable as required by the constraints.
We shall later see that a high similarity between these vectors which makes
them harder to separate, while still allowing for a working mechanism, actually
limits its robustness.

Next, we show that if the condition described in Proposition 1 does not
hold, we can always construct a proper payment scheme. Moreover, once we
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have some working payment scheme, we can easily turn it into an optimal one
for the principal with a cost of c.

Proposition 2. If the probability vectors ~px are pairwise independent, i.e.,
∀x, x′ there is no λ such that ~px = λ · ~px′ , then there is a proper payment
scheme with a mean cost as close to c as desired. This solution is optimal, due
to the individual rationality constraint.

Intuitively, this means that if the state of the car influences the chances of it
breaking down even to a very small degree, then Bob can find a payment scheme
that will properly motivate Alice to tell the truth. The proof idea is that once
the truth-telling constraints are satisfied (using a regular scoring rule), the other
constraints can also be satisfied by scaling the payments, and adding a constant
to them.

Proof. We can easily build an optimal solution by using a strictly proper scoring
rule

uω,x = α · S(Pr(ω|x), ω) + βω (18)

for some positive α, and some value βω. Since the independence relation holds
for every pair x, x′, the probabilities Pr(ω|x) are distinct and the scoring rule
assures us (Equation 1) of the incentive for truth-telling regardless of the values
of α, βω.

To satisfy the investment constraint, one can scale the payments until the
value of information for the agent justifies the investment. Setting

α > max
x′

[
c

∑

ω,x

pω,x(S(Pr(ω|x), ω) − S(Pr(ω|x′), ω))
] (19)

satisfies that constraint for every x′. This is also shown in [15].
Finally, we can use the βω values to satisfy the remaining individual rational-

ity constraint tightly by shifting the payments until their average is just above
c:

βω = β > c − α
∑

ω,x

pω,x · S(Pr(ω|x), ω) (20)

We have thus shown a payment scheme with the minimal cost for every
elicitation problem where different observations of X entail different probability
distributions of ω. Notice that we are able to achieve the optimal cost of c by
allowing negative payments to the seller as well (penalties). If we allow only
positive payments, the cost will be higher.

3.3.1 Bad Verifiers

We have seen that if the information being sold has no bearing on the distri-
butions of the probabilistic verifier Ω, no payment scheme can possibly create
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the incentives we require. But what if Ω provides only a slight indication of the
correctness of the information?

In our example, this would be a scenario where Bob’s car is only slightly
more likely to break down if it is in poor condition. How does that affect the
mechanism that is to be constructed? We will show below that Bob will need a
large difference between payments made to Alice, that will in fact increase the
risk involved for both of them.

We are given a hint of this by the construction of the mechanism above. In
order to satisfy the investment constraints, we needed to scale the payments and
thus increase the risk level of the mechanism. This becomes more severe if the
verifier variable is poorly correlated with the purchased information. It seems
that when Ω is a weak verifier, the difference between payments must increase.
This increase in the risk of payments causes the value of information for the
seller to increase as well—up to a level in which it is worthwhile to make the
effort and obtain the true information. We demonstrate this fact here for the
case of |X| = 2.

Example 2 (Bad verifiers result in high risk mechanisms). Let us assume that
Ω is indeed a poor verifier. The probabilities Pr(Ω |x1) and Pr(Ω |x2) must be
very similar. Let us denote:

~px1 = ~q + ~ǫ ; ~px2 = ~q − ~ǫ (21)

where ~ǫ is a very small vector. The investment constraints for this case are
therefore:

(~q + ~ǫ) · ~ux1 + (~q − ~ǫ) · ~ux2 > (~q + ~ǫ) · ~ux1 + (~q − ~ǫ) · ~ux1 + c (22)

(~q + ~ǫ) · ~ux1 + (~q − ~ǫ) · ~ux2 > (~q + ~ǫ) · ~ux2 + (~q − ~ǫ) · ~ux2 + c (23)

Combining them gives us:

2~ǫ · ~ux1 > 2~ǫ · ~ux2 + 2c (24)

which simplifies to:

||~ux1 − ~ux2|| · ||~ǫ|| ≥ (~ux1 − ~ux2) · ~ǫ > c (25)

From this last inequality we see that as the norm of ~ǫ goes to 0, the difference
between the payment vectors (~ux1 − ~ux2) goes to infinity—which indicates a
high level of variation in payments dictated by the mechanism. If we add the
restriction of paying only positive payments, this implies that the expected cost
of the mechanism goes to infinity as well.

4 Belief-Robust Mechanisms

In the previous section, we saw that it is easy to design information elicitation
mechanisms in the single agent case. However, we assumed that the mechanism
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designer has precise knowledge about the probability distribution pω,x, and that
the seller of information is using the exact same distribution while it is contem-
plating which action to take. This is generally an assumption that is unlikely
to hold.

In our running example, the mechanic Alice may have more expertise and
may assign a probability to the event in which Bob’s car breaks down that is
different than Bob’s uninformed assessment. Can Bob still assign payments that
will properly motivate Alice? What will be the cost of this missing knowledge?

In many real-world scenarios, probabilities are often assessed through mod-
eling or sampling (Alice can know the chance of a car breaking down more
accurately because she has encountered more cars, or has a better understand-
ing of why and when they break down), and two agents may have two different
notions of the probabilities of certain events. This could have serious effects on
the reliability of mechanisms designed for real systems.

We shall therefore try to relax the assumption of a commonly known prob-
ability distribution, which we have used so far. We will instead assume that
agents have “close” notions of the governing probability distributions. This as-
sumption is reasonable, for example, in cases where distributions are learned by
sampling and past experience. If some event has probability p of occurring, two
agents sampling independently will not disagree greatly about that probability.

We denote the beliefs of the mechanism designer by p̂ and the beliefs of a
participating agent by p = p̂ + ǫ, where ǫ is small according to some norm. We
have opted for the L∞ norm in this work, because it is easily described using
linear constraints (it simply takes the maximum over all coordinates). Other
norms may also be used, and will yield convex optimization problems that are
not linear.

Next, we define the notion of belief robustness of the mechanism and through
it examine the design of mechanisms that are still expected to work even if there
is some difference between the beliefs of agents. We argue that not all payment
schemes are equal—some may be more robust to changes in beliefs than others
and should therefore be the preferred choice for use in real-world domains.

4.1 The Robustness Level of a Payment Scheme

Figure 3 presents a case in which the probabilities the seller believes in are
not exactly known and may be within a certain region around what the buyer
believes. The two payment schemes portrayed, v′ and v′′, are not the same.
The scheme denoted by v′ ensures that the probability vectors will be linearly
separated (as is required by Equation 13), while v′′ may fail to do so in some
cases. We shall therefore want to think of v′ as a more robust payment scheme
than v′′. Whenever the perturbation is severe and v′′ does not linearly separate
the vectors, the buyer of information will be lied to by the seller that has different
beliefs and may conclude that lying is beneficial.

Definition 1. We shall say that a given payment scheme uω,x is ǫ-robust for
an elicitation problem with distribution p̂ω,x if it is a proper payment scheme
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Figure 3: An elicitation problem with uncertain probabilities, and two payment
schemes with different robustness levels.

with regard to every elicitation problem with distribution p̂ω,x + ǫω,x such that
‖~ǫ‖∞ < ǫ, and is not proper for at least one problem instance of any larger
norm.

The definition above is very conservative, and requires that the mechanism
work for every possible difference in beliefs. Another possible approach is to use
an explicit probability distribution over possible continuous beliefs of the agents
involved and require that the mechanism work well in a large-enough portion of
the cases.7

Intuitively, it is appealing to attempt to find a maximal margin separation
between the vectors, and use that to construct the payment schemes in a robust
way. We show in Section 4.2.1 that this is indeed related to our definition of
robustness, and discuss why such an approach will not work directly.

4.1.1 Determining the Robustness Level of a Mechanism

Given an offer for a payment mechanism from Alice, Bob can check to see if it
will create the incentives for Alice (according to his own beliefs). What is the
level of change in beliefs that will still keep the mechanism proper?

We can calculate the robustness level ǫ of a given mechanism by solving a
linear programming problem for every constraint. We do this by looking for the
worst-case ǫω,x, which stands for the worst possible belief that the participating
agent may hold. We are given the values of the payments and use them as
parameters in the program to find a minimal perturbation of the probabilities

7This alternative formulation can also be handled using tools similar to those we use here
(i.e., stochastic programming). Later, in Section 5, we examine a situation where there is a
discrete set of possible beliefs held by the seller.
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that will violate some constraint. For example, we can write the following
program to find the worst case for one of the truth-telling constraints:

min ǫ s.t.
∑

ω

(p̂ω,x + ǫω,x)(uω,x − uω,x′) ≤ 0

∀x, ω p̂ω,x + ǫω,x ≥ 0
∑

ω,x

ǫω,x = 0

∀x, ω −ǫ ≤ ǫω,x ≤ ǫ

In the program above, only ǫ and ǫω,x are variables. The linear programs for
other constraints are easily built by substituting, for the first constraint above,
the negation of one of the constraints in the original design problem:

min ǫ s.t.
{place the negation of one of the constraints here}

∀x, ω p̂ω,x + ǫω,x ≥ 0
∑

ω,x

ǫω,x = 0

∀x, ω −ǫ ≤ ǫω,x ≤ ǫ

Once we have solved similar linear programs for all the constraints in the
original design problem (a total of |X|2 + 1 linear programs to solve), we take
the minimal ǫ found for them as the level of robustness for the mechanism. The
solution also provides us with a problem instance of distance ǫ for which the
mechanism would fail. We solve several programs here instead of just one large
program because when formulating the problem this way it can be solved using
linear optimizers, which are often simpler than general convex optimizers.

4.1.2 Finding a Mechanism With a Given Robustness Level

Now that Bob realizes that his original mechanism is not robust enough, he
may try to find one that would be (if such a mechanism exists). It is possible to
search for a payment scheme with a given robustness level ǫ using the following
stochastic program:

min
∑

ω,x

p̂ω,x · uω,x Target function

s.t. ∀x 6= x′ ∑

ω

pω,x(uω,x − uω,x′) > 0
∑

ω,x

pω,x · uω,x > c Constraints

∀x′ ∑

ω,x

pω,x(uω,x − uω,x′) > c

where: ∀x, ω pω,x = p̂ω,x + ǫω,x

pω,x ≥ 0 ;
∑

ω,x

pω,x = 1 Parameter Range

−ǫ ≤ ǫω,x ≤ ǫ
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In this program, the variables are the payments uω,x, while the probabilities
pω,x are parameters that are unknown but are within some limited distance
from p̂ω,x. The program considers all distributions p that are close to p̂ up to ǫ,
according to the L∞ norm. As we have mentioned before (in Section 2.3), this
problem is convex.

In fact, we have already seen how to build a separation oracle for it—given
a payment scheme uω,x we can check its robustness as shown in Section 4.1.1.
This check will tell us if our payment scheme is within the allowed convex area.
If it is not, it will provide us with a perturbation ǫω,x for which the solution fails.
This gives us a linear condition that all solutions are required to uphold, but
the given scheme does not (and is exactly what a separation oracle is required
to provide). This procedure is called constraint generation and is often used in
optimization problems. More details can be found in [33].

If a norm that is different than the L∞ norm is used, the parameters section
in the stochastic program would be different: the perturbation ~ǫ would still be
required to reside within a ball of some radius (only it is a ball according to
some other norm) which is also a convex shape. In this case, if we want to
check if some perturbation violates any of the constraints, we will have to use
a convex program solver to search this ball for such a perturbation. The only
difference is that this convex program is no longer a linear program as we were
assured when we used L∞, but it is still efficiently solvable.

4.1.3 The Cost of Robust Mechanisms

We have already seen that for the program instance for which ∀ω, x ǫω,x = 0
(which corresponds to the original, non-robust design problem), a payment
scheme that costs only infinitesimally more than c always exists (if any mecha-
nism exists). A robust payment scheme, however, is required to cope with any
possible belief variation, and will cost more to implement.

Consider a mechanism with an expected cost of γ =
∑

ω,x

p̂ω,x · uω,x. Since

it is not possible (due to the other constraints) that all uω,x are 0, then there
exists a perturbation of beliefs ǫω,x which is negative for the largest uω,x and is
positive for the smallest one, which then yields a strictly lower payment than γ
according to the belief of a participating agent. Therefore, in order to satisfy
the individual rationality constraint, γ must be strictly larger than c, and the
buyer must pay more in expectation.

4.2 The Robustness Level of an Elicitation Problem

Bob may want to get the truth from Alice more than he cares about saving
money. In cases like this, he may want the most robust payment scheme he can
find. This in a sense is the best mechanism he can compose with his limited
information about the probabilities of events. Is there a limit to the robustness
that can be obtained? How can it be computed?

We define the robustness level of the problem in the following manner:
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Definition 2. The robustness level ǫ∗ of the problem p̂ is the supremum of all
robustness levels ǫ for which a proper mechanism exists:

ǫ∗ , sup
~u

{ǫ|~u is an ǫ-robust payment scheme for p̂}.

To find the robustness level of a problem, one can perform a binary search;
the robustness level is certainly somewhere between 0 and 1. One may test
at every desired level in between to see if there exists a mechanism with some
specified robustness by solving the stochastic program above. The space between
the upper and lower bounds is then narrowed according to the answer that was
received.

As in the non-robust case, the design of a robust single-agent mechanism
relies only on the truth-telling constraints:

Proposition 3. If a given solution uω,x is ǫ-robust with respect to the truth-
telling constraints only, then it can be transformed into an ǫ-robust solution to
the entire problem.

Proof. We achieve this in a manner similar to Equations 19 and 20. We simply
scale the solution to give robustness for the investment constraint, and shift it
to add robustness to the incentive compatibility constraint. Since the solution
is ǫ-robust for the truth-telling constraints we have:

∀~ǫ s.t. ‖~ǫ‖ < ǫ ∀x 6= x′
∑

ω

pω,x(uω,x − uω,x′) > 0. (26)

If we sum over x we get:

∑

ω,x

pω,x(uω,x − uω,x′) > 0 (27)

which implies that there exists a number δx′,~ǫ such that:

∑

ω,x

pω,x(uω,x − uω,x′) > δx′,~ǫ > 0. (28)

Now multiplying every uω,x by a factor α = max
x′,~ǫ

c
δ

x′~ǫ

will not hurt any of

the truth-telling constraints, but will yield a new payment scheme ũ for which:

∀~ǫ ∀x′
∑

ω,x

pω,x(ũω,x − ũω,x′) > c (29)

which satisfies all of the investment constraints, for any possible belief change.
Next, the solution can be shifted to satisfy the individual rationality con-

straint, without hurting the robustness with regard to the previous constraints.
We can simply add a constant β to every payment:

β > c − min
ω,x

[ũω,x]. (30)
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We will thus get a solution u∗ that satisfies

∀ω, x u∗
ω,x > c (31)

and therefore satisfies
∑

ω,x

pω,x · u∗
ω,x >

∑

ω,x

pω,x · c = c (32)

for all possible belief changes, meaning that u∗ is ǫ-robust.

4.2.1 A Bound for Problem-Robustness

A simple bound for robustness of the problem can be derived from the require-
ment of eliciting the truth between just two possible statements the information
seller may provide. This shows the relation between maximal margin separators
and our notion of robustness. Proposition 1 for non-robust mechanisms can be
viewed as a specific case of the following proposition (when applied to 0-robust
mechanisms):

Proposition 4. The robustness level ǫ∗ of a problem p̂ can be bounded by the
distance between any vector p̂x and the optimal hyperplane that separates it from
any other vector p̂x′ . By selecting the pair of vectors that minimizes this bound
we get:

ǫ∗ ≤ min
x,x′

||p̂x − (p̂tr
x · ~ϕx,x′) · ~ϕx,x′ ||∞ (33)

~ϕx,x′ =
p̂x + p̂x′

||p̂x + p̂x′ ||2
(34)

The optimal separating hyperplane is a hyperplane that separates the points and
is of maximal (and equal) distance from both of them.

Here ~ϕx,x′ is a normalized vector that passes within equal distance of p̂x and
p̂x′ (see Figure 4). ǫ∗ is then limited by that equal distance, which we compute
by subtracting from p̂x its projection in the direction ~ϕx,x′ .

Proof. If there exist x, x′ that are within a distance of ǫ to the hyperplane,
then these two vectors p̂x, p̂x′ can be perturbed towards the hyperplane with
a perturbation of norm ǫ, until they are linearly dependent. For this problem
instance, according to Proposition 1, there is no possible mechanism.

It appears from the proposition above that the most robust mechanism could
be found easily by finding optimal separating hyperplanes between the probabil-
ity vectors ~px, but in fact this alone will not do. The payment vectors that define
the separators have additional constraints (see Equations 14 and 15) that relate
the various separators to one another. In addition, one must consider robustness
with regard to other constraints (not just the truth-telling constraints). With
these additional factors, the most robust payments may not match the optimal
separators at all.

However, in the case where |Ω| = 2, the vectors p̂x are situated in a two-
dimensional plane, and it can be shown that the bound given above is tight—
then the problem robustness is determined exactly by the closest pair of vectors.
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Figure 4: A Bound for the Robustness Level

5 Partial Revelation Mechanisms

In this section we shall explore, from a different angle, the problem of a common
prior between agents. We shall modify our model of the information transaction
and give the seller of information an extra random variable S that it can access.
The value of S will not be divulged to the buyer, but may influence the decisions
of the seller. We will however assume that the buyer is aware of the existence
of this extra information and its possible values. As a result of this extra
information, the buyer is placed at a disadvantage. It knows even less about the
state of the world than the seller. This condition holds even after the transaction
is concluded.

For example, in the scenario we presented in Section 1.1, Charlie who is
Alice’s boss may design the payment scheme so that Alice tells all of her cus-
tomers the truth. He knows that Bob’s car may have one of two different motors
installed in it. One motor is of higher quality and has less chance of breaking
down, and the other is of lower quality. Alice, who is a trained mechanic, can
find out which type of motor Bob has (which she can do at a mere glance
without any effort), which will influence the probabilities she associates with a
malfunction. Bob may not be interested in the exact make of his engine, only
in the likelihood that the car will break down. Can Alice still be financially
encouraged to tell the truth?

Figure 5 describes the new elicitation scenario. The seller still needs to pay
a cost of c to access the random variable X and report its findings to the buyer,
only now it can access (for free) the random variable S as well. The payment
made by the buyer depends only on the information it has available—not on the
value of S. Once again we assume that a probability distribution pω,x,s governs
the three variables, and that it is common knowledge. Note however, that since
the seller alone has access to S, it has a clearer and more precise knowledge of
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the distribution of X and Ω since it knows Pr(Ω = ω,X = x |S = s).

Figure 5: An Elicitation Scenario with a Secret Variable S

The three types of requirements from a mechanism are similar to those we
have seen before. We shall now say that a mechanism is proper for a secret s if
the following three conditions hold:

1. Truth Telling.

∀x, x′ s.t. x 6= x′,
∑

ω

pω,x,s · (uω,x − uω,x′) > 0 (35)

2. Individual Rationality.
∑

ω,x

pω,x,s · uω,x > c · ps (36)

3. Investment.

∀x′
∑

ω,x

pω,x,s · uω,x − c · ps >
∑

ω,x

pω,x,s · uω,x′ (37)

When designing partial revelation mechanisms, there are often probability
distributions that do not allow us to construct an effective mechanism for all
possible secrets the seller may hold. The example in Figure 6 demonstrates such
a case.

It is impossible to find a separating hyperplane that will separate ~px1,s1 from
~px2,s1 and at the same time separate ~px1,s2 from ~px2,s2. The hyperplanes v′ and
v′′ work only for a single secret each. Since the buyer is never told about the
actual secret s, it has no way of creating the incentives for truthfulness in both
cases.

We must therefore settle on building a mechanism that will work only part
of the time. We will naturally aspire to have a good confidence level in our
mechanism—to build a mechanism that will work with high probability. There
are two possible alternatives we examine here:

1. A single-use, disposable mechanism—where we design the mechanism for
only a single transaction. We then want the buyer’s confidence in the
received answer to be high:

θ1 = Prs,x(u is proper for state (s, x)). (38)
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The two axes correspond to the probabilities of the two possible results, so all
probability vectors are in the 2D plane.

Figure 6: An Elicitation Scenario with Two Possible Results, and Two Possible
Secrets

This means that we only require truth-telling in case of secret s and value
x′ that occur.

If we refer back to our example, this sort of mechanism will be appealing
to Bob if he needs a single evaluation of the condition of his car. In this
case, Alice may report several different findings. Some of them have very
low probability (for example, the event of a crack in the motor may be
extremely rare) and Bob may not mind if that specific piece of information
is not elicited correctly (because it is such a remote occurrence).

2. A reusable mechanism—where we design the mechanism for multiple trans-
actions. Here, we want the buyer to have high confidence that, once the
secret s has been set, he will hear the truth for all possible cases of X:

θ2 = Prs(u is proper for secret s). (39)

Referring again to our example, this mechanism may have appeal if Bob
wants several evaluations of his car performed, and wants the truth for
as many of them as possible. Since the model of Bob’s engine does not
change between examinations of the car, he can take that into account
when maximizing the probability of hearing the truth.

5.1 Complexity of Partial Revelation Mechanism Design

Proposition 5. Deciding if a reusable revelation mechanism with a confidence
level over some threshold θ exists is NP-Complete. Furthermore, the problem of
finding the mechanism with the maximal confidence level cannot be approximated
within any constant.
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The design problem is in NP. This is because if we are given access to an
oracle that tells us which secrets to try to satisfy and which to give up on, we can
find a payment scheme that satisfies the right constraints in polynomial time.
This is achieved by solving the linear program that consists of the constraints
for all the included secrets.

We show that constructing a fully operational mechanism is NP-Complete by
presenting a reduction from the Independent Set problem. The full reduction is
presented in the appendix. The Independent Set problem, in addition to being
NP-Complete, is also hard to approximate [34]. The reduction we give is a
cost-preserving reduction and therefore demonstrates that our problem is just
as hard to approximate as Independent Set.

The high complexity of designing proper mechanisms applies in the single-
use, disposable case as well.

Proposition 6. Deciding if there exists a single-use elicitation mechanism with
a confidence level over some threshold θ is also NP-Complete.

Proof of this proposition relies on a reduction from the Hyperplane-Con-
sistency problem. The full proof appears in the appendix.

5.2 Finding Partial Revelation Mechanisms

We now present two approaches to computing a partial revelation mechanism
for a given problem pω,x,s. As we have already seen, the problem of finding such
a mechanism is NP-Complete, and unless P=NP, we cannot hope to locate the
optimal mechanism in polynomial time in all cases. However, in some cases, the
problem may be simpler than the worst possible case. The two approaches we
present differ in the complexity of the algorithm. One algorithm will be better
in cases where |S| is small, while the other will be better in cases where |Ω| · |X|
is small.

The algorithms we present are for reusable mechanisms. Similar versions
can be constructed for the single-use case.

5.2.1 Considering All Combinations of Secrets

The reductions we used in the proofs of Propositions 5 and 6 both relied on the
difficulty of selecting the cases in which we wish the mechanism to work. This
difficulty arises due to the discrete nature of the secrets. If we had an oracle
that shows us which constraints to try to satisfy, we could easily construct a
mechanism. Since we do not possess such an oracle, we can try every possible
combination by brute force. This method relies on the discrete nature of the
problem and the finite set of possible secrets:

In the algorithm above, there are 2|S| ways to select secrets to satisfy. Each
selection then requires poly(|S||X||Ω|) time to check for feasibility. This there-
fore gives a running time of O(2|S| · poly(|S||X||Ω|)) which can still be efficient
if the number of possible secrets is small.
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Algorithm 1 [Reusable Mechanism Construction]:

1. For all W ∈ 2S :

(a) Locate a mechanism that satisfies all constraints for all secrets in W .

(b) If such a mechanism exists, compute θW =
∑

s∈W

ps.

2. Return a mechanism for secrets arg max
W

(θW ).

5.2.2 The Geometric Approach—Partitioning into Cells

The second approach we shall examine is based on a geometric interpretation of
the problem. The linear constraint for the mechanism design problem partitions
the space of payment vectors into cells. Each cell is a region of the space for
which some set of constraints holds, while the rest are violated.

Figure 7: A collection of hyperplanes partitioning the plane into cells.

The mechanism design problem is in fact the problem of locating a non-
empty cell that satisfies as many constraints as possible. This naturally leads
to an algorithm that builds a list of cells and iterates over them to locate the
cell assignment with the highest score.

In order to generate the list of cells L needed in the algorithm above, one can
simply start from a list containing a single cell that contains the entire vector
space and incrementally add hyperplanes. Each hyperplane that is added may
partition a cell in the list into two cells, one on either side of the hyperplane, or
may leave the cell intact. At every stage one only needs to iterate over the list
of existing cells and check if they are split by the new hyperplane.
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Algorithm 2 [Geometric]:

1. Construct a list L of cells created by all hyperplanes ~px,s.

2. Select an assignment σ : X × X → L.

3. Try to solve the linear problem that consists of constraints placing vx,x′

in the cell σ(x, x′), and satisfying
~vx,x′ = −~vx′,x ; ~vx,x′′ = ~vx,x′ + ~vx′,x′′

4. If a solution is found, compute:

(a) Wσ ∈ 2S , the list of secrets that assignment σ of vectors vx,x′ satisfies.

(b) θσ =
∑

s∈Wσ

ps.

5. Return the payment scheme found for arg max
σ

(θσ).

5.2.3 Complexity of the Algorithm

In order to analyze the running time of Algorithm 2, we need to obtain a bound
on the number of cells created by the hyperplanes defined by ~px,s. Such a bound
is given in [35]. Given m hyperplanes in d-dimensional space, the number of
cells is bounded by:

Φd(m) =
d

∑

i=0

(

m

i

)

= O(md). (40)

The bound is obtained using the VC-Dimension of the concept class implied by
cell partitioning and Sauer’s lemma [36].

This bound is especially interesting when d is small, since it implies that the
number of cells is only polynomial in the number of hyperplanes m.

In our case, we have |X||S| hyperplanes in an |Ω|-dimensional space, which
gives a bound of |L| = O(|X||S||Ω|) cells. Generating the list of cells can be
done in

O(|X||S|2|Ω| · poly(|X||S||Ω|))

time steps. The number of possible assignments σ : X × X → L is

O(|L||X|2) = O(|X||S||X|2|Ω|)

and for each assignment we need to solve a linear program that requires poly(|X||S||Ω|))
steps, which gives us a total running time of

O(|X||S||X|2|Ω| · poly(|X||S||Ω|))

time steps.
This algorithm is therefore better in cases where |S| is large, but |Ω| and |X|

are small.
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6 Elicitation of Confidence Ratings

In many cases, the expert that sells the information has some idea regarding
the reliability of the information it is selling. For example, a reviewer reading
a paper is often asked to rate his or her familiarity with the field, and his or
her confidence in the submitted review. Confidence level is also quite impor-
tant when considering what to do with information—if a reviewer who is not
confident was selected, the paper could be sent for further review to someone
else. In other cases, only a noisy signal can be received—Alice may check Bob’s
car and discover that the problem is either in the ignition system, or the fuel
injection system, but be unsure as to the exact origin.

It is therefore important to be able to elicit the confidence rating or degree
of certainty regarding a piece of information, and not just the information itself.
Fortunately, this is often possible with various models for inexact information,
as these often reduce to regular information elicitation problems. We briefly
demonstrate two such models here.

6.1 An Error Model

One such model for confidence would be to assume that with some probability pc,
the information learned by the expert is correct and drawn from the distribution
pω,x, while with probability 1−pc it is erroneous and has a value of X according
to some other distribution:

qω,x = q(Ω = ω,X = x). (41)

X and Ω may be independent in the distribution qω,x, but this does not have
to be the case.

The seller can then be asked to divulge pc, as well as the value of X that it
got. Figure 8 depicts the information transaction in this case. In this model, we
allow pc to take continuous values between 0 and 1, and assume that the cost
of acquiring the information is 0, as there is no way to create the incentives to
learn the value of X in case the confidence rating is pc = 0.8

Figure 8: Elicitation of a Confidence Rating pc

8If we are sure the confidence level is always higher than some positive number, then a
mechanism can be designed to ensure investment of effort as well.
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Proposition 7. The confidence ratings pc and the true value of X can be elicited
truthfully if there exists a truthful payment scheme for the elicitation of X with
payments ~ux such that for any x, x′ ∈ X,

~qx · (~ux − ~ux′) ≥ 0. (42)

Proof. Let u be a payment scheme that truthfully elicits the value of X, as well
as the condition from inequality 42. Now, given two possible values (x, pc), (x

′, p′c),
if x 6= x′ we have:

~qx · (~ux − ~ux′) ≥ 0 ; ~px · (~ux − ~ux′) > 0 (43)

~qx′ · (~ux − ~ux′) ≤ 0 ; ~px′ · (~ux − ~ux′) < 0 (44)

which implies

(pc · ~px + (1 − pc) · ~qx) · (~ux − ~ux′) ≥ 0 (45)

(pc′ · ~px′ + (1 − pc′) · ~qx′) · (~ux − ~ux′) ≤ 0 (46)

where the inequalities above are strict whenever pc, pc′ are not 0. Now notice
that P (Ω|x, pc) = pc · ~px + (1 − pc) · ~qx and Equations 45, 46 in fact show that
the probabilities P (Ω|x, pc) are different as long as pc, pc′ 6= 0. We can then
award the seller a payment according to some scoring rule:

uw,x,pc
= S(P (Ω = ω|x, pc), ω).

Since the probabilities P (Ω|x, pc) are different for every report, the scoring rule
assures us of the incentive to tell the true value.

Remark 1. The condition

~qx · (~ux − ~ux′) ≥ 0

implies that the payment scheme u also truthfully elicits the value of X under the
probability distribution q (as long as whenever the seller is indifferent between
telling the truth and lying it will choose to tell the truth).

6.2 Inexact Knowledge

Another possible model in which the seller has unreliable information is one
where instead of getting a value of x ∈ X it receives a set T ⊂ X from which
the value of X will be chosen (and so it knows something more about the possible
values of X, but not the exact value).

We then assume that learning the subset T implies that X will be chosen
only from that subset according to the distribution pω,x that is reduced to T :

Pr(X = x,Ω = ω, x ∈ T ) =
pω,x

∑

ω′

∑

x′∈T pω′,x′

(47)
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In this case, we can ask the seller to provide the exact subset T that it
learned. This problem once again is reduced to a truthful information elici-
tation problem, this time with T being the elicited variable. Each value of T
implies a different distribution on the values of ω and can thus be elicited us-
ing mechanisms of the form we have shown in Section 3 for the distribution
Pr(Ω|T ).

Note, however, that the model we presented did not include information
about the probability of a certain T ⊂ X being selected, and that there is no
way to discuss the elicitation of effort without such a model.9

7 Conclusions

We have introduced a model for discrete information transactions and have
shown simple information elicitation mechanisms that can provide the sellers
with the correct incentives to report honestly and even invest effort into obtain-
ing the information they sell. We have shown that in most cases these simple
mechanisms exist and can be designed optimally using scoring rules. We ex-
plored various properties of the solution, such as the cost of the mechanisms
and the level of risk they entail when verification of information is difficult.

In order to tackle the problem of belief variations between the sellers and the
designer of the mechanism, we introduced the concept of robust mechanisms.
These mechanisms are guaranteed to work if the beliefs of agents are not too
far apart. We have shown efficient algorithms for learning the robustness level
of a given payment scheme, finding payment schemes with guaranteed level of
robustness, and for finding the robustness level of a problem. The efficiency of
their design, as well as their resilience, makes these mechanisms good candidates
for application in real-world scenarios.

We have used tools of stochastic programming to solve for robust solutions,
but have only scratched the surface of potential uses of these tools. Other
alternative problem formulations can be explored, especially formulations that
include more detailed information about the possible beliefs of agents. These
would fit quite well into mainstream work done in stochastic programming.

To further explore information transactions, we examined a model in which
the seller of information has access to extra information that is not sold. We
have seen that partial revelation of information can make it impossible to build
mechanisms that work all the time, and that building good mechanisms that
work most of the time is a computationally difficult task. Here we have pro-
vided proofs of computational difficulty as well as two algorithms with different
running times that may be suitable in different cases.

9A possible model is to assume T is selected according to a probability that is propor-
tional to

P

x∈T px, which then ensures that x is eventually selected according to the original
distribution pω,x.
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A Computational Hardness of Reusable Mech-

anism Design

Proposition: Deciding if a reusable revelation mechanism with a confidence
level over some threshold θ exists is NP-Complete. Furthermore, the problem of
finding the mechanism with the maximal confidence level cannot be approximated
within any constant.

Proof. The proof relies on a reduction from the Independent Set problem. Given
an undirected graph G(V,E) and an integer k ≤ |V | the Independent Set de-
cision problem is defined as the problem of deciding whether there is a set of
vertices W ⊂ V so that |W | ≥ k, and such that for every edge e ∈ E, e does
not occur on more than one vertex in V .

The intuition behind the reduction is derived from Figure 6. The selection of
vertices in the independent set will be designed to match a selection of secrets
to satisfy in the design problem. In order to uphold the restriction that no
two vertices sharing an edge can be chosen together, a construction similar to
Figure 6 will be created in a dedicated two-dimensional subspace to assure that
their matching secrets cannot be satisfied at the same time.

Let us now proceed with the proof. Given an instance of the Indepen-
dent Set problem (G(V,E), k) we shall construct a mechanism design problem
(Ω,X, S, P, θ) in the following manner:10

Ω =
⋃

e∈E

{ωe1, ωe2} ; X =
⋃

e∈E

{xe1, xe2} (48)

S = V ; θ =
k

|V |
(49)

We denote by ~δi the vector that is 0 at all coordinates except for coordinate
i, where it takes the value of 1, and by α a normalizing constant that equals
α = 1

2|E||V | . P is then defined as follows:

10A small comment about notation: e1 and e2 above do not reference the two vertices of
edge e, but just serve to denote two different values for that edge. We shall explicitly make it
clear when we refer to vertices of the edge.
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if v /∈ e then:
~pxe1,v = α · ~δωe1

; ~pxe2,v = α · ~δωe2
(50)

otherwise e = {v1, v2} and we set:

~pxe1,v1 = α · ~δωe1
; ~pxe2,v1 =

α

2
· (~δωe1

+ ~δωe2
) (51)

~pxe1,v2 =
α

2
· (~δωe1

+ ~δωe2
) ; ~pxe2,v2 = α · ~δωe2

(52)

With the above construction all secrets have the same probability of occur-
ring:

Pr(S = s) =
∑

ω,x

pω,x,s = 2|E|α =
1

|V |
(53)

Below we show the two steps needed to complete the proof:

1. If the graph G has an independent set of size k then there is a
mechanism with a confidence level above the threshold θ.

Let us assume that G has an independent set W ⊂ V of size k. We shall
build a payment scheme that will give a proper mechanism for all the
secrets matching the vertices in W . For an edge e that has one of its
vertices in the independent set,11 we shall define:

~uxe1
=

~pxe1,v

||~pxe1,v||
; ~uxe2

=
~pxe2,v

||~pxe2,v||
(54)

where v is the vertex (from edge e) that was selected for the independent
set. If on the other hand e did not have any vertex in the independent
set, we simply set

~uxe1
= ~δωe1

; ~uxe2
= ~δωe2

(55)

We will next demonstrate that this payment scheme does give a truthful
mechanism at least for all the secrets in W . We must therefore show that

∀v ∈ W ∀xek 6= xe′l ∈ X

~pxek,v · (~uxek
− ~ux

e′l
) > 0 (56)

Let us examine the following three cases:

(a) Edge e does not occur on vertex v, and has no vertex in the indepen-

dent set. Then the vector ~pxek,v = α · ~δωek
. Because e has no vertex

in the independent set then ~uxek
= ~δωek

, meaning that it is a unit
vector in the direction of ~pxek,v. Since ~ux

e′l
is also a unit vector that

is in the other direction, its inner product with ~pxek,v is smaller and
the inequality holds.

11It cannot have both its vertices in the set—only one or none.
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(b) Edge e does not occur on vertex v, but has another vertex in the

independent set. In this case we still have ~pxek,v = α · ~δωek
but now

~uxek
has two possible values, depending on which vertex of e is in the

independent set. Either

i. ~uxek
= ~δωek

ii. ~uxek
= 1√

2
· (~δωek

+ ~δω
ek

)

In both these cases the inner product between ~pxek,v and ~uxek
is

strictly positive. If e′ is an edge that is different from e then ~pxek,v ·
~ux

e′l
is zero and the inequality holds. Otherwise, e′ = e but k 6= l. In

this case we observe that (~uxek
− ~ux

ek
) · ~δωek

> 0 (simply by looking
at all the cases)—and this gives us the required inequality exactly.

(c) Edge e occurs on vertex v. Since we are only concerned with v’s
that are in the independent set, the vector ~uxek

is by our definition
a unit vector in the direction of ~pxek,v, while ~ux

e′l
is a unit vector in

another direction. This means that the inner product between ~pxek,v

and ~uxek
is greater and the inequality once again holds.

We have thus shown that we are able to have a working mechanism for
every vertex v ∈ W and thus have a mechanism that works well for k
secrets. The confidence level of the mechanism designer in its mechanism
is then at least

∑

s∈W

Pr(S = s) = k
|V | = θ.

2. If there is a good mechanism with confidence level above θ then
there is an independent set of size k in the graph.

Since there is a confidence level of k
|V | , there must be at least k satisfied

secrets in the mechanism. Each such secret matches a vertex in the original
problem. It remains to show that the set W of vertices matching satisfied
secrets is independent. Assuming the opposite leads to a contradiction.
The secrets matching two vertices that are connected by an edge cannot
be satisfied at the same time due to the way the problem was constructed.
The probability vectors for each edge (~pxe1,v1, ~pxe1,v2, ~pxe2,v1, ~pxe2,v2) were
placed in a separate two-dimensional space, and were set similarly to the
vectors in Figure 6—in a way that ensures that both pairs cannot be
linearly separated at the same time.

Let us show that the set W of vertices matching satisfied beliefs is inde-
pendent. We first assume the opposite: that there are two vertices that we
shall denote v, v′ ∈ W that reside on the same edge in G. By construction
we therefore have two beliefs for vertices v, v′ that were both satisfied.
Meaning that

∀x 6= x′ ∈ X ~px,v · (~ux − ~ux′) > 0 (57)

and also that
~px,v′ · (~ux − ~ux′) > 0 (58)
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More specifically, the above holds true for any specific values of x, x′ that
we choose, such as for xe1 and xe2, where e is the edge that is shared by
v, v′. Therefore, the following two statements must be true at the same
time:

~pxe2,v · (~uxe2
− ~uxe1

) > 0 (59)

~pxe1,v′ · (~uxe1
− ~uxe2

) > 0 (60)

Without loss of generality, we can assume at this point that v is the first
vertex in edge e, and v′ is the second vertex. Therefore, by construction
we have:

~pxe2,v = ~pxe1,v′ =
α

2
· (~δωe1

+ ~δωe2
) (61)

and by substituting this into the above, we reach a contradiction, since it
cannot be the case that both of the following are true at the same time:

~pxe2,v · (~uxe2
− ~uxe1

) > 0 (62)

~pxe1,v′ · (~uxe1
− ~uxe2

) = −~pxe2,v · (~uxe2
− ~uxe1

) > 0 (63)

So our assumption that there can be two secrets v, v′ that are satisfied at
the same time but have counterpart vertices on the same edge is false, and
the set W is indeed independent.

This completes the proof of the reduction.

B Computational Hardness of Designing Single-

Use Mechanisms

Proposition: Deciding if there exists a single-use elicitation mechanism with a
confidence level over some threshold θ is NP-Complete.

Proof. We give a proof of this proposition using a series of reductions from the
decision problem associated with Max-Hyperplane-Consistency. This problem
is known to be NP-Complete [39].

An instance of the Hyperplane-Consistency problem is defined by a tuple
(P,N , k) where k is an integer and P,N are sets of vectors in R

n with integer
coordinates. The instance should be accepted if a biased linear separator (~w, b)
exists such that:

k ≤ |{~x ∈ P | ~w · ~x ≥ b}| + |{~x ∈ N | ~w · ~x < b}| (64)

meaning that the separator (~w, b) manages to place more than k points from P
on its positive side and from N on its negative side.

Now, given a Hyperplane-Consistency problem we shall reduce it to a single-
use mechanism design problem in three steps:
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1. We will first show that a hyperplane-consistency problem for vectors with
only positive coordinates is still NP-complete;

2. We will then show that using an unbiased hyperplane to separate positive
vectors is still just as hard;

3. Finally, we shall reduce the last problem to a mechanism design problem,
thus showing that it is NP-Complete to design the mechanism.

Let us assume that we are given a Hyperplane-Consistency problem (P,N , k).
We now define a new problem Pos-Hyperplane-Consistency as the tuple
(P ′,N ′, k) where

P ′ = {~x + ~δ |x ∈ P} (65)

N ′ = {~x + ~δ |x ∈ N} (66)

and where ~δ has been set large enough in each coordinate to turn all vectors in
P ′ and N ′ positive.

We will now show that given a hyperplane that separates points in a certain
way in the original problem, we can build a hyperplane that will separate the
matching points in the new problem in the same manner and vice versa. Given
a hyperplane (~w, b), we look at the hyperplane (~w, b+ ~w ·~δ) in the new problem.

~w · ~x ≥ b ⇐⇒ ~w · (~x + ~δ) ≥ ~b + ~w · ~δ (67)

Meaning that a point ~x and its corresponding point ~x+~δ in the new problem are
classified in the same way by the hyperplane. In other words, if some hyperplane
exists (in either problem) that manages to correctly classify k points or more,
then a matching classifier exists in the other problem as well. Pos-Hyperplane-
Consistency is therefore also NP-Complete.

Now, we shall show that Pos-Unbiased-Hyperplane-Consistency (where the
hyperplanes are unbiased) is still an NP-Complete problem. Given an instance
(P ′,N ′, k) of Pos-Hyperplane-Consistency, we shall reduce it to an instance
(P ′′,N ′′, k) of Pos-Unbiased-Hyperplane-Consistency by adding a coordinate
to each vector in P ′ and N ′:

P ′′ = {(~x, 1) |x ∈ P ′} (68)

N ′′ = {(~x, 1) |x ∈ N} (69)

The last coordinate in the vectors now takes the place of the bias. For every
hyperplane defined by ~w, b, there is a matching unbiased hyperplane with a
weight vector (~w,−b) that gives the same classification to the matching point
in the new problem.

~w · ~x ≥ b ⇐⇒ (~w,−b) · (~x, 1) ≥ 0 (70)

A correct classification of k or more points exists in the new problem iff it
existed in the old problem, and Pos-Unbiased-Hyperplane-Consistency is NP-
Complete as well.
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We shall now see the final step in the proof—a reduction from Pos-Unbiased-
Hyperplane-Consistency to the mechanism design problem. Given an instance
of the former, (P ′′,N ′′, k) in an n dimensional space, we shall reduce it to the
following design problem:

Ω = {1, . . . , n + 2} ; X = {0, 1} (71)

S = P ′′ ∪N ′′ ; θ =
1

2
(1 +

k

|S|
) (72)

If ~s ∈ P ′′ we define:
~p0,~s =

α

||~s||1
· (~s, 0, 0) (73)

~p1,~s = α · (~0, 1, 0) (74)

Otherwise ~s ∈ N ′′ and we define:

~p0,~s = α · (~0, 0, 1) (75)

~p1,~s =
α

||~s||1
· (~s, 0, 0) (76)

Where α in the above is a normalizing constant that makes sure the prob-
abilities sum to 1. In the above, we assume without loss of generality that no
point appears both in P ′′ and in N ′′, otherwise it can be eliminated from the
problem while reducing k by 1. Now, with the definitions above, a payment
mechanism which is simply a vector ~v0,1 works for state x,~s if the vector ~px,~s

is positioned on the correct side of the hyperplane it represents. The vectors of
the form α ·(~0, 1, 0) and α ·(~0, 0, 1) can always be placed on the correct side since
they have a coordinate dedicated just to them for that purpose. They constitute
one half of the probability weight. The other half are actually vectors identical
to the vectors in P ′′ and in N ′′ with zeros in their extra coordinates, and a
correct separation of k out of them implies directly the correct separation of
vectors in the original problem and vice versa.
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