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Abstract

We examine a setting in which a buyer wishes to purchase
probabilistic information from some agent. The seller must
invest effort in order to gain access to the information, and
must therefore be compensated appropriately. However, the
information being sold is hard to verify and the seller may be
tempted to lie in order to collect a higher payment.

While it is generally easy to design information elicitation
mechanisms that motivate the seller to be truthful, we show
that if the seller has additional relevant information it does
not want to reveal, the buyer must resort to elicitation mech-
anisms that work only some of the time. The optimal design
of such mechanisms is shown to be computationally hard.

We show two different algorithms to solve the mechanism
design problem, each appropriate (from a complexity point
of view) in different scenarios.

Introduction
The old aphorism “Knowledge is power”, stated by Sir Fran-
cis Bacon some four centuries ago, is more relevant now
than ever. The need to make informed choices causes cor-
rect and accurate information to be a desired and highly-
valued commodity. As intelligent artificial agents take on
more tasks, and need to act independently within large sys-
tems, their need to buy and sell information increases.

The problem with information in stochastic environments
is that it is hard to evaluate, and may be easily faked. Any
novice can give a prediction regarding the behavior of to-
morrow’s stock market; by pure chance, those predictions
may outperform those of even the most informed financial
wizard.

The question that naturally arises is how to pay for in-
formation that can only be verified with some probability.
This is especially important in cases where in order to ob-
tain the information, the seller itself has to invest some ef-
fort. The payments made by the buyer must be carefully set
so as to induce the seller to invest the effort into acquiring
the true information. Otherwise, the seller might be tempted
to avoid the cost of obtaining the information, and simply
make something up.
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Our Setting
We study a simple information transaction between a pair of
agents — a seller and a buyer. The buyer is assumed to be
interested in some of the information the seller possesses,
while the seller only wishes to gain a payment from the
transaction, and is not interested in any other aspect of the
information it is passing. The buyer and seller are assumed
to be in a one-shot interaction. The buyer therefore has no
means of punishing nor of rewarding the seller through fu-
ture interactions.

Having less knowledge about the exact state of the world,
the buyer is naturally at a disadvantage. It must operate un-
der these conditions and decide how to pay for knowledge
it does not yet have. In fact, we shall look into situations
where the asymmetry in knowledge is even worse — be-
sides the information being sold, the seller has some other
relevant information that it will never divulge. This is even
worse for the buyer, as it does not possess all the information
needed to decide on a payment, even after the fact.

To be able to motivate the seller to give correct informa-
tion, the buyer must have some way of verifying the infor-
mation it buys. We assume payment is set not only according
to the information that was sold, but also according to some
probabilistically linked outcome that the buyer observes af-
ter the transaction.

The case of partial revelation of information is very nat-
ural to the information elicitation setting. A buyer is often
interested in some very specific information, but would not
want to pay for anything extra, while the seller would not
want to give out any unnecessary information for reasons of
privacy, or simply because it would like to sell it to some
other party. The classicmechanism designapproach of us-
ing direct and full revelation is therefore unsuitable in these
settings.

Throughout the paper we adopt the point of view of the
buyer that needs to design the correct payment scheme for
information it is about to purchase, and make the assumption
often made in game theory that the seller seeks to maximize
its gains and will attempt to manipulate the result of the in-
teraction if it can benefit from doing so.

Contribution of the Paper
This paper examines information elicitation problems with
partial revelation. While it is computationally easy to design



full revelation mechanisms for the problem, we show that
in the case of partial revelation mechanisms, even with full
knowledge of the underlying probabilities of events, the de-
signer must resort to using mechanisms that work only part
of the time, and are computationally hard to design.

We show two approaches to the mechanism design prob-
lem that yield two different algorithms. Each algorithm is
appropriate under different circumstances.

Our approach is aimed at applications in large open sys-
tems, where agents need to trade information without any
reputation or reliability record of the party with which they
are interacting. Such scenarios are becoming more common
due to the growth of the internet, and the multitude of anony-
mous interactions that it allows. Concrete examples might
include various web services, peer-to-peer networking, and
the provision of many other types of data that can be sold
online.

The rest of the paper is organized as follows. The next
section formally introduces the model for information elici-
tation, and examines some of its basic properties. In the sec-
tion on Full Revelation Mechanisms, we review the design
of payment schemes in cases where no information is kept
private. We then turn to Partial Revelation Mechanisms, ex-
amine their limitations, and demonstrate that their designis
computationally hard. We continue by presenting two dif-
ferent approaches to finding working mechanisms, and by
presenting the algorithms they imply. We briefly review re-
lated work, and finally present our own conclusions, with
some possible avenues for future research.

The Model
We assume the buyer wishes to purchase information about
the value of a discrete random variableX from a seller that
can learn the value of that variable at a costc. The seller
is also assumed to possess private information about a se-
cret random variableS which it does not wish to reveal. To
verify the quality of the information it purchases, the buyer
has access to a random variableΩ. Ω,X, S are presum-
ably not independent variables, and knowledge about the
value of one of them gives some information regarding the
value of the others. Using the variableΩ, the buyer can get
some idea if the information it was sold was correct. With-
out Ω, it would be impossible to create the necessary in-
centives for truthfulness on the part of the seller. We shall
denote the probability distribution for the tripletΩ,X, S by
pω,x,s = Pr(Ω = ω,X = x, S = s). The values the differ-
ent variables can take, as well as the probability distribution
pω,x,s, are assumed to be common knowledge.

The buyer can now design a payment scheme that will de-
termine the payment it must give to the seller, based on the
information the seller gave and on the value of the verifica-
tion variableΩ. In a full revelation scheme, the agent would
be asked to reveal its secret as well as the value ofX. It
would then be paid an amountuω,x,s that depended on the
values ofX,S it reported, and on the observed value ofΩ
which the seller used to verify the information. In a partial
revelation mechanism, the agent will only be asked aboutX,
and will be paid some amountuω,x.

We assume that agents seek to maximize their expected
gains and that they are risk-neutral. The precise require-
ments of an appropriate payment scheme are listed below.

Proper Payment Schemes
A good payment scheme must motivate the selling agent
to first invest the effort into obtaining the value ofX, and
then to reveal the true value it found. Additionally, a pay-
ment scheme needs to be individually rational — the seller
must have a positive expected utility from entering the game.
These demands then translate to the following constraints we
would optimally want to satisfy, given that the selling agent
knows of a secrets ∈ S:

1. Truth Telling. Once the seller knows its variable isx, it
must have an incentive to tell the true value to the buyer,
rather than any liex′.

∀x, x′ s.t. x 6= x′,
∑

ω

pω,x,s · (uω,x − uω,x′) > 0

(1)
Here pω,x,s is the probability of what actually occurs,
while the paymentuω,x′ is based on the reported value.

2. Individual Rationality. A seller must have a positive ex-
pected utility from participating in the game:

∑

ω,x

pω,x,s · uω,x > c · ps (2)

3. Investment. Thevalue of informationfor the seller must
be greater than its cost. Any guess the seller makes with-
out actually computing its value must be less profitable
(in expectation) than paying to obtain the true value of the
variable and revealing it:

∀x′
∑

ω,x

pω,x,s · uω,x − c · ps >
∑

ω,x

pω,x,s · uω,x′ (3)

Definition 1. A payment schemeu shall be considered
proper for state(s, x) if the seller has incentive to reveal
x truthfully in a case whereS = s,X = x.
Definition 2. We shall say that the scheme is proper for a
secrets if ∀x, it is proper for state(s, x).

Truth Above All
It is important to note that by rescaling and shifting the pay-
ments, we can transform a mechanism that satisfies only the
truth-telling constraints described in the previous section,
into a mechanism that satisfies the other constraints as well.
This is because multiplying the payments by some positive
constantα will not affect the truth-telling constraints, and
α can be chosen to satisfy the investment constraints. Then
shifting all payments uniformly byβω will not affect the
truth-telling constraints or the investment constraints,but
canhelp satisfy the individual rationality constraint.

While the resulting mechanism will not necessarily be an
optimal one, its very existence demonstrates that at least
some mechanism is possible. It is therefore sufficient, for
purposes of feasibility, to examine solutions for the truth-
telling constraints alone. We shall therefore focus our ef-
forts on understanding the structure of the truth-telling con-
straints.



The Geometric Interpretation of the Truth-Telling Con-
straints We shall write the truth-telling constraints using
vector notation in a way that will help demonstrate their ge-
ometric and algebraic properties.

Let us denote the vector~ux as the vector of payments
~ux = (uω1,x . . . uωn,x) and let us denote by the vector~px,s

the vector of probabilities~px,s = (pω1,x,s . . . pωn,x,s). We
shall also define the vectors~vx,x′ = ~ux − ~ux′ . The truth-
telling constraints for some secrets can now be written as
follows:

∀x, x′ ~px,s · (~ux − ~ux′) = ~px,s · ~vx,x′ > 0 (4)
Now, if we think of~vx,x′ as a vector that defines a hyper-

plane through the origin,1 we can see that the truth-telling
constraint forx, x′ simply states that the vector~px,s is found
on the positive side of this hyperplane. On the other hand,
the matching constraint in whichx′ and x are exchanged
gives us~px′,s · ~vx,x′ < 0 which means that the vector~px′,s

is found on the negative side of the hyperplane defined by
~vx,x′ . We can thus find a proper mechanism for a secrets
if we manage to separate all vectors~px,s correctly using lin-
ear separators. Note however, that we are not completely
free to select~vx,x′ vectors independently, and we are in fact
constrained to satisfy, for allx, x′, x′′:

~vx,x′ = −~vx′,x ; ~vx,x′′ = ~vx,x′ + ~vx′,x′′ (5)

This simple geometric interpretation will shed some light
on the difficulties of designing elicitation mechanisms.

Full Revelation Mechanisms
When the seller reveals all the relevant information it pos-
sesses, it is computationally easy to design a mechanism that
will provide motivation for truth-telling:
Proposition 1. A full revelation mechanism can be designed
in polynomial time.
Proof: We simply take a linear program composed of all the
constraints — for all possible secrets, as was shown above.
Such a linear program is solvable in polynomial time using
currently known optimization techniques (Bertsimas & Tsit-
siklis 1997).

In fact, such a mechanism will exist, except for some sin-
gular cases:
Proposition 2. A fully revealing mechanism that motivates
truthfulness exists iff all vectors~px,s are pairwise linearly
independent.
Proof: If there is a pair of vectors that is linearly dependent,
it cannot be separated by a hyperplane that passes through
the origin, and therefore no payment scheme will be able to
satisfy the truth-telling constraints.

Otherwise, no pair of vectors is linearly dependent, and
we shall simply demonstrate a proper elicitation mechanism.
For a given problem~p we shall set the payments to be:

~ux,s =
~px,s

||~px,s||
(6)

1The hyperplane is defined as the collection of all vectors per-
pendicular to~vx,x′ .

Which gives:

~px,s · (~ux,s − ~ux′,s′) = ~px,s · (
~px,s

||~px,s||
−

~px′,s′

||~px′,s′ ||
) =

= ||~px,s|| −
~px,s · ~px′,s′

||~px′,s′ ||
≥ 0 (7)

where the last inequality is due to the Cauchy-Schwarz in-
equality and is a strict inequality whenever~px,s and~px′,s′

are independent. This is proof that the payment vector we
selected satisfies the truth-telling constraints. Now, with
scaling and shifting it can be adjusted to satisfy the other
constraints as well.

Partial Revelation Mechanisms
In partial revelation mechanisms, the seller will keep its pri-
vate variableS secret. The payment it receives only depends
onΩ andX. When designing partial revelation mechanisms,
there are often probability distributions that do not allowus
to construct an effective mechanism forall possible secrets
the seller may hold. The example in Figure 1 demonstrates
such a case.

The 2 axes correspond to the probabilities of the two
possible results, so all probability vectors are in the 2D

plane.

Figure 1: An Elicitation Scenario with 2 Possible Results,
and 2 Possible Secrets

It is impossible to find a separating hyperplane that will
separate~px1,s1 from ~px2,s1 and at the same time separate
~px1,s2 from ~px2,s2. The hyperplanesv′ andv′′ work only
for a single secret each. Since the buyer is never told about
the actual secrets, he has no way of creating the incentives
for truthfulness in both cases.

We must therefore settle on building a mechanism that
will work only part of the time. We will naturally aspire to
have a good confidence level in our mechanism — to build
a mechanism that will work with high probability. There are
two possible alternatives we examine here:

1. A single-use, disposable mechanism — where we design
the mechanism for only a single transaction. We then
want the buyer’s confidence in the received answer to be
high:

θ1 = Prs,x(u is proper for state(s, x))



2. A reusable mechanism — where we design the mecha-
nism for multiple transactions. Here, we want the buyer
to have high confidence that once the secrets has been
set, he will hear the truth for all possible cases ofX.

θ2 = Prs(u is proper for secrets)

Complexity of Partial Revelation Mechanism
Design
Proposition 3. Deciding if there exists a reusable revela-
tion mechanism with a confidence level over some threshold
θ is NP-Complete. Furthermore, the problem of finding the
mechanism with the maximal confidence level cannot be ap-
proximated within any constant.

The design problem is in NP. This is because if we are
given access to an oracle that tells us which secrets to try
and satisfy and which to give up on, we can find a pay-
ment scheme that satisfies the right constraints in polyno-
mial time. This is achieved by solving the linear program
that consists of the constraints for all the included secrets.

We shall show that constructing fully operational mech-
anisms is NP-Complete by presenting a reduction from the
Independent Set problem. The Independent Set problem, in
addition to being NP-Complete, is also hard to approximate.
The reduction we shall present is a cost-preserving reduction
and therefore demonstrates that our problem is just as hard
to approximate as Independent Set.

Given an undirected graphG(V,E) and an integerk ≤
|V | the Independent Setdecision problem is defined as the
problem of deciding whether there is a set of verticesW ⊂
V so that|W | ≥ k, and such that for every edgee ∈ E, e
does not occur on more than one vertex inV .
Proof: [to Proposition 3] Given an Independent Set problem
(G(V,E), k) we shall construct a mechanism design prob-
lem (Ω,X, S, P, θ) in the following manner:

Ω =
⋃

e∈E

{ωe1, ωe2} ; X =
⋃

e∈E

{xe1, xe2}

S = V ; θ =
k

|V |
(8)

We denote by~δi the vector that is 0 at all coordinates except
for coordinatei, where it takes the value of 1, and byα
a normalizing constant that equalsα = 1

2|E||V | . P is then
defined as follows:

if v /∈ e then:

~pxe1,v = α · ~δωe1
; ~pxe2,v = α · ~δωe2

(9)

otherwisee = {v1, v2} and we set:

~pxe1,v1 = α · ~δωe1
; ~pxe2,v1 =

α

2
· (~δωe1

+ ~δωe2
)

~pxe1,v2 =
α

2
· (~δωe1

+ ~δωe2
) ; ~pxe2,v2 = α · ~δωe2

(10)

With the above construction all secrets have the same
probability of occurring:

Pr(S = s) =
∑

ω,x

pω,x,s = 2|E|α =
1

|V |
(11)

Below we sketch the two steps needed to complete the proof:

1. If the graph G has an independent set of sizek then
there is a mechanism with a confidence level above the
threshold θ.
Let us assume thatG has an independent setW ⊂ V of
sizek. We shall build a payment scheme that will give a
proper mechanism for all the secrets matching the vertices
in W . For an edgee that has one of its vertices in the
independent set,2 we shall define:

~uxe1
=

~pxe1,v

||~pxe1,v||
; ~uxe2

=
~pxe2,v

||~pxe2,v||
(12)

wherev is the vertex (from edgee) that was selected for
the independent set. If on the other hande did not have
any vertex in the independent set, we simply set

~uxe1
= ~δωe1

; ~uxe2
= ~δωe2

(13)

Due to space limitations, we omit the proof that this se-
lection of payments does indeed satisfy the constraints.

2. If there is a good mechanism with confidence level
aboveθ then there is an independent set of sizek in
the graph.
Since there is a confidence level ofk|V | , there must be at
leastk satisfied secrets in the mechanism. Each such se-
cret matches a vertex in the original problem. It remains
to show that the setW of vertices matching satisfied se-
crets is independent. Assuming the opposite leads to a
contradiction. The secrets matching two vertices that are
connected by an edge cannot be satisfied at the same time
due to the way the problem was constructed. The prob-
ability vectors for each edge (~pxe1,v1, ~pxe1,v2, ~pxe2,v1,
~pxe2,v2) were placed in a separate two-dimensional space,
and were set similarly to the vectors in Figure 1 — in a
way that assures that both pairs cannot be linearly sepa-
rated at the same time.

The high complexity of designing proper mechanisms ap-
plies in the single-use, disposable case as well.

Proposition 4. Deciding if there exists a single-use revela-
tion mechanism with a confidence level over some threshold
θ is also NP-Complete.

Proof: [sketch] A reduction can be shown from the
problem Max-Hyperplane-Consistency which is also NP-
Complete (Amaldi & Kann 1995). This is the problem of
finding a biased hyperplane that will correctly separate a
maximal number of points from two sets: a positive set that
must be on the positive side of the hyperplane, and a nega-
tive set that must be on the opposite side.

Finding Partial Revelation Mechanisms
We now present two approaches to computing a partial reve-
lation mechanism for a given problempω,x,s. As we have al-
ready seen, the problem of finding such a mechanism is NP-
Complete, and unless P=NP, we cannot hope to locate the

2It cannot have both its vertices in the set — only one or none.



optimal mechanism in polynomial time in all cases. How-
ever, in some cases, the problem may be simpler than the
worst possible case. The two approaches we present differ
in the complexity of the algorithm. One algorithm will be
better in cases where|S| is small, while the other will be
better in cases where|Ω| · |X| is small.

The algorithms we present are for reusable mechanisms.
Similar versions can be constructed for the single-use case.

Considering All Combinations of Secrets
The reductions we used in the proofs of Propositions 3 and
4 both relied on the difficulty of selecting the cases in which
we wish the mechanism to work. If we had an oracle that
shows us which constraints to try and satisfy, we could easily
construct a mechanism. Since we do not possess such an
oracle, we can try every possible combination by brute force.

Algorithm 1 [Reusable Mechanism Construction]:

1. For allW ∈ 2S :

(a) Locate a mechanism that satisfies all constraints for all
secrets inW .

(b) If such a mechanism exists, computeθW =
∑

s∈W

ps.

2. Return a mechanism for secretsarg max
W

(θW ).

In the algorithm above, there are2|S| ways to se-
lect secrets to satisfy. Each selection then requires
poly(|S||X||Ω|) time to check for feasibility. This therefore
gives a running time ofO(2|S| ·poly(|S||X||Ω|)) which can
still be efficient if the number of possible secrets is small.

The Geometric Approach — Partitioning into Cells
The second approach we shall examine is based on a geo-
metric interpretation of the problem. The linear constraint
for the mechanism design problem partitions the space of
payment vectors into cells. Each cell is a region of the space
for which some set of constraints holds, while the rest are
violated.

Figure 2: A collection of hyperplanes partitioning the plane
into cells.

The mechanism design problem is in fact the problem of
locating a non-empty cell that satisfies as many constraints
as possible. This naturally leads to an algorithm that builds

a list of cells and iterates over them to locate the cell assign-
ment with the highest score.

Algorithm 2 [Geometric]:

1. Construct a listL of cells created by all hyperplanes~px,s.

2. Select an assignmentσ : X × X → L.

3. Try to solve the linear problem that consists of constraints
placingvx,x′ in the cellσ(x, x′), and satisfying
~vx,x′ = −~vx′,x ; ~vx,x′′ = ~vx,x′ + ~vx′,x′′

4. If a solution is found, compute:

(a) Wσ ∈ 2S the list of secrets that assignmentσ of vectors
vx,x′ satisfies.

(b) θσ =
∑

s∈Wσ

ps.

5. Return the payment scheme found forarg max
σ

(θσ).

In order to generate the list of cellsL needed in the al-
gorithm above, one can simply start from a list containing
a single cell that contains the entire vector space and incre-
mentally add hyperplanes. Each hyperplane that is added
may partition a cell in the list into two cells, one on either
side of the hyperplane, or may leave the cell intact. At every
stage one only needs to iterate over the list of existing cells
and check if they are split by the new hyperplane.

Complexity of the Algorithm In order to analyze the run-
ning time of Algorithm 2, we need to obtain a bound on the
number of cells created by the hyperplanes defined by~px,s.
Such a bound is given in (Edelsbrunner 1987). Givenm
hyperplanes ind-dimensional space, the number of cells is

bounded by:Φd(m) =
d
∑

i=0

(

m

i

)

= O(md). The bound is ob-

tained using the VC-Dimension of the concept class implied
by cell partitioning and Sauer’s lemma (Vidyasagar 1997).

This bound is especially interesting whend is small, since
it implies that the number of cells is only polynomial in the
number of hyperplanesm.

In our case, we have|X||S| hyperplanes in an|Ω|-
dimensional space, which gives a bound of|L| =
O(|X||S||Ω|) cells. Generating the list of cells can be done
in O(|X||S|2|Ω| · poly(|X||S||Ω|)) steps, and going over all
possible assignmentsσ : X ×X → L is then accomplished
in O(|X||S||X|2|Ω| · poly(|X||S||Ω|)) time steps.

This algorithm is therefore better in cases where|S| is
large, but|Ω| and|X| are small.

Related Work
Proper Scoring Rules Scoring rules (Savage 1971) are
used in order to assess and reward a prediction given in prob-
abilistic form. A score is given to the predicting expert that
depends on the probability distribution the expert specifies,
and on the actual event that is ultimately observed. For a set
Ω of possible events andP, a class of probability measures
over them, a scoring rule is then defined as a function of the
form: S : P × Ω → R.



A scoring rule is calledstrictly proper if the predictor
maximizes its expected score by saying the true probability
of the event, and receives a strictly lower score for any other
prediction. That is:Eω∼p[S(p, ω)] ≥ Eω∼p[S(q, ω)] where
equality is achieved iffp = q. (Gneiting & Raftery 2004;
Hendrickson & Buehler 1971) show a necessary and suffi-
cient condition for a scoring rule to be strictly proper which
allows easy generation of various proper scoring rules by
selecting a bounded convex function overP.

An interesting use of scoring rules within the context of
a multiagent reputation system was suggested by (Miller,
Resnick, & Zeckhauser 2005), who use payments based on
scoring rules to create the incentive for agents to honestly
report about their experience with some service provider.

Mechanism Design The field of mechanism design deals
with the creation of mechanisms that motivate individual
agents to act in a way that will be beneficial to the whole of
society or to the designer itself. (Maskin & Sjöstr̈om 2001)
presents a good review of the field. A common approach
to the mechanism design problem is to elicit the preferences
of participants and then use them in order to decide on the
outcome of the mechanism. The direct revelation principle
states that whenever a mechanism with the proper incentives
exists, there must be a proper mechanism in which the agents
reveal everything. This is simply because one can construct
the mechanism to receive the preferences from the partici-
pants and then act optimally on their behalf.

In settings where information is sold, it is unlikely that
the seller would be willing to participate in direct revela-
tion schemes. Since information is the primary commod-
ity, revealing more of it to the mechanism is unwise, and
the agent’s beliefs about probabilities contain extra informa-
tion. It remains unwise even if the mechanism is handled by
a trusted third party, since revealing extra information would
be reflected in payments made by the buyer.

(Conitzer & Sandholm 2002) proposed applying auto-
mated mechanism design to specific scenarios as a way of
tailoring the mechanism to the exact problem at hand, and
thereby developing superior mechanisms.

Other uses for information elicitation exist in multi-party
computation (Smorodinsky & Tennenholtz 2005), where
some function of the agents’ secrets is computed, but agents
may have reservations about revealing or computing their
own secret. Another area in which information elicitation
is implemented is polling. The information market (Bohm
& Sonnegard 1999; Wolfers & Zitzewitz 2004) approach has
been suggested as a way to get more reliable results than reg-
ular polls. There, agents buy and sell options that will pay
them an amount that is dependent on the outcome of some
event (like some specific candidate winning an election).

Conclusion and Future Research
We have examined information elicitation mechanisms
where some relevant information that the seller possesses
does not get revealed. We have seen that in these cases, the
buyer must resort to mechanisms that work only with some
probability. Finding such mechanisms with a high level
of confidence is a computationally hard task, and we have

demonstrated two approaches for doing so, each appropriate
(from a complexity point of view) in different scenarios.

Many issues of information elicitation mechanisms still
remain to be addressed. For example, the extension of
such mechanisms to scenarios with multiple sellers and buy-
ers would be interesting. In these settings, information
held or sold by agents might be obtained through a third
party. Issues of cross-validation of information from differ-
ent sources, and possible collusion among agents that trade
in information, could also be interesting. Further exploration
can be made of scenarios where the various variables being
sold are represented in compact Bayesian-networks. In these
cases, the structure of the network and conditional indepen-
dence between variables may affect mechanisms and prices
for information exchange.
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