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Abstract

We study information elicitation mechanisms in which a prin-
cipal agent attempts to elicit the private information of other
agents using a carefully selected payment scheme based on
proper scoring rules. Scoring rules, like many other mecha-
nisms set in a probabilistic environment, assume that all par-
ticipating agents share some common belief about the under-
lying probability of events. In real-life situations however, the
underlying distributions are not known precisely, and small
differences in beliefs of agents about these distributions may
alter their behavior under the prescribed mechanism.
We propose designing elicitation mechanisms that will be ro-
bust to small changes in belief. We show how to algorith-
mically design such mechanisms in polynomial time using
tools of stochastic programming and convex programming,
and discuss implementation issues for multiagent scenarios.

Introduction
Game theory and decision theory tools have long been used
to predict or prescribe the behavior of rational agents in var-
ious settings. The common assumption made is that agents
seek to maximize their own gains, but in games with an ele-
ment of chance or multiple players, a given choice can lead
to many outcomes, and there are various ways to compare
among actions. The most common approach is to consider
expected returns from taking each action (other methods in-
corporate measures such as attitude towards risk). In any
case, agents take into consideration the probability distribu-
tion for various outcomes of the game, or for the type of
opponent they are facing and its selected actions.

When given the task of designing a system with inter-
actions among agents, the designer faces a complementary
problem. The mechanism must be designed so as to in-
duce a rational, self-interested agent to behave in a pre-
dictable, desirable manner. Themechanism design liter-
ature provides many successful examples of such mecha-
nisms (see (Maskin & Sjöstr̈om 2001) for a review).

Our Scenario
In this paper, we explore mechanisms for information elici-
tation. We assume that some principal agent wishes to buy
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information in a probabilistic environment, perhaps to pre-
dict some future event. In the scenario we explore, the in-
formation that is obtained can only be verified probabilis-
tically; thus, there is often no clear-cut way to expose the
seller of information as a liar. Furthermore, we assume that
the sellers and buyers are engaged in a one-shot interaction.
This means that there is no record of the past reliability of
the seller, on which the buyer can rely; nor will there be
any future interaction through which the buyer can reward or
punish the seller. The proper incentives for truthfulness can
be put into place by carefully selecting the payments to the
seller. If the probabilities of events are common knowledge,
it is computationally easy to design the payment mechanism
(discussed below).

However, in many real-world situations, agents cannot
know the underlying probability distributions, but can only
assess them by sampling or other methods. If the under-
lying probabilities cannot be directly known, there may be
differences among agents with access to various sources of
information, or with different priors over these distributions.

Partial Revelation for Information Elicitation
This problem is often addressed by direct revelation mecha-
nisms that require agents to divulge all needed information,
including their probability beliefs (i.e.,type). The mecha-
nism then takes this information into account and acts op-
timally on behalf of the agent, eliminating any need to be
untruthful. However, in settings where information is sold,
it is unlikely that the seller would be willing to participate in
direct revelation schemes. Since information is the primary
commodity, revealing more of it to the mechanism is unwise,
and the agent’s beliefs about probabilities contain extra in-
formation.1 In this sense, information elicitation scenarios
are different from classical preference elicitation problems.

There is another important difference. In preference elic-
itation scenarios, information revelation is most often used
as a means to an end (i.e., to arrive at some desirable out-
come). In pure information elicitation, the information be-
ing revealedis the point of the transaction. Furthermore, the
seller is only concerned with its payment, not any other con-
sequence of providing one piece of information or another.

1It remains unwise even if the mechanism is handled by a
trusted third party, since revealing extra information would be re-
flected in payments made by the buyer.



Contribution of the Paper
It is now commonplace, via the Internet, for information ex-
change to occur among strangers, with no assurance of re-
liability. Examples might include web services created by
individuals, providing various specific types of information
(e.g., weather or traffic information). A good mechanism
can motivate a seller of information to be truthful, but the
effectiveness of such a mechanism depends on the beliefs of
the agents involved.

We suggest that in cases where there is some uncertainty
regarding the beliefs of agents, mechanisms should be de-
signed for robustness, not only against the manipulations
players may attempt, but also to deal with differences in the
beliefs they may hold. Our contribution in this paper is to
define a notion of belief-robustness in information elicita-
tion mechanisms. We show efficient algorithms for finding
robust mechanisms when such mechanisms are possible, and
examine the complications that arise when attempting to ex-
tend the notion to the multiagent case.

The rest of the paper is organized as follows. In the next
section we present the mathematical background to our ap-
proach. We then formally define the information elicitation
scenario, and discuss the solution to the simpler case where
the probabilities are all common knowledge, including vari-
ous solution concepts in the multiagent case. In the section
on Belief Robust Mechanisms, we relax the assumption of
common knowledge, and define the notion of mechanism ro-
bustness (which deals with variations in beliefs about prob-
abilities). We show how to optimally design mechanisms in
this setting, and discuss issues of the multiagent case. We
conclude with an overall discussion of related work, our ap-
proach, and of future work.

Mathematical Background
Strictly Proper Scoring Rules Scoring rules (Savage
1971) are used in order to assess and reward a prediction
given in probabilistic form. A score is given to the predict-
ing expert that depends on the probability distribution the
expert specifies, and on the actual event that is ultimately
observed. For a setΩ of possible events andP, a class of
probability measures over them, a scoring rule is then de-
fined as a function of the form:S : P × Ω → R.

A scoring rule is calledstrictly proper if the predictor
maximizes its expected score by saying the true probability
of the event, and receives a strictly lower score for any other
prediction. That is:Eω∼p[S(p, ω)] ≥ Eω∼p[S(q, ω)] where
equality is achieved iffp = q. (Gneiting & Raftery 2004;
Hendrickson & Buehler 1971) show a necessary and suffi-
cient condition for a scoring rule to be strictly proper which
allows easy generation of various proper scoring rules by
selecting a bounded convex function overP.

An interesting use of scoring rules within the context of
a multiagent reputation system was suggested by (Miller,
Resnick, & Zeckhauser 2005), who use payments based on
scoring rules to create the incentive for agents to honestly
report about their experience with some service provider.

Stochastic Programming Stochastic Programming (Kall
& Wallace 1995) is a branch of mathematical programming

where the mathematical program’s constraints and target
function are not precisely known. A typical stochastic pro-
gram formulation consists of a set of parameterized con-
straints over variables, and a target function to optimize.The
program is then considered in two phases. The first phase
involves the determination of the program’s variables, and
in the second phase, the parameters to the problem are ran-
domly selected from the allowed set. The variables set in
the first stage are then considered within the resulting in-
stantiation of the problem. Therefore they must be set in a
way that will be good for all (or most) possible problem in-
stances. There are naturally several possible ways to define
what constitutes a good solution to the problem. In this pa-
per, we use the conservative formulation of (Ben-Tal & Ne-
mirovski 1999) which requires the assignment of variables
to satisfy the constraints of the program forevery possible
program instance. Linear stochastic programs such as these
are efficiently solvable using convex programming tools.

In our case, each instance will correspond to a different
variation in the beliefs held by the participating agents.

The Information Elicitation Scenario
The scoring rule literature usually deals with the case in
which the predicting expert is allowed to give a prediction
from a continuous range of probabilities, but we look at a
slightly different problem: we assume each agent (including
the principal agent) has access to a privately-owned random
variable that takes a finite number of values only. The dis-
crete values allow us to tailor the mechanism to the exact
scenario at hand without the need to differentiate between
infinitesimally different cases. Knowledge that is sold is
very often natural to present discretely.2 Finally, aggregat-
ing information from several agents is also much clearer and
simpler to do with discrete variables.

We shall denote the principal agent’s variable byΩ, and
the variables of some agenti by Xi, and assume that it costs
the agentci to access that variable and learn its precise in-
stantiation. Since access to information is costly, the seller
may have an incentive to guess at the information instead
of investing the effort to learn the truth. Another possibil-
ity is that the seller will misreport if it believes a lie would
increase the payment it receives. The buyer of information,
having access only toΩ (which may be only loosely corre-
lated withX) might not be able to tell the difference.

The discrete values each variable may take are assumed to
be common knowledge. We also assume that there is an un-
derlying probability distributionPr(Ω,X1, . . . ,Xn) which
(for the time being) we shall consider as known to all partic-
ipants. The mechanism designer needs to decide on a pay-
ment scheme which consists of the payment to each agenti
in case of an observation ofω by the buyer, and the obser-
vationsx1, . . . , xn reported by the agents. We shall denote

2For example, a person acquiring weather information could be
interested in the temperature forecast for the next day, but would
not really care if the exact temperature is off by one degree. The
required information in this case might be given just to make a dis-
crete choice of how warmly to dress. Continuous data can some-
times be made discrete according to the various actions it implies.



that payment by:ui
ω,x1,...,xn

. A payment scheme shall be
consideredproper if it creates the incentive for agents to en-
ter the game, invest the effort into acquiring their variable,
and to tell the true value that they found. These three re-
quirements are defined more precisely below.

The Single Agent Case
For ease of exposition, we shall first look at the restricted
case of a single agent (we shall return to the multiagent case
later). We assume here that the agent is risk-neutral. In the
case of one participating agent with a single variable, we
need to satisfy three types of constraints in order to have a
working mechanism. For convenience, we drop the index
i of the agent and denote bypω,x the probabilityPr(Ω =
ω,X = x).

1. Truth Telling. Once an agent knows its variable isx, it
must have an incentive to tell the true value to the princi-
pal, rather than any liex′.

∀x, x′ s.t. x 6= x′

∑

ω

pω,x·(uω,x−uω,x′) > 0 (1)

Remember thatpω,x is the probability of what actually
occurs, and that the paymentuω,x′ is based only on what
the agent reported.

2. Individual Rationality. An agent must have a positive
expected utility from participating in the game:

∑

ω,x

pω,x · uω,x > c (2)

3. Investment. Thevalue of information for the agent must
be greater than the cost of acquiring it. Any guessx′ the
agent makes without actually computing its value must be
less profitable (in expectation) than paying to discover the
true value of the variable and revealing it:

∀x′

∑

ω,x

pω,x · uω,x − c >
∑

ω,x

pω,x · uω,x′ (3)

Note that all of the above constraints are linear, and can
thus be applied within a linear program to minimize, for ex-
ample, the expected cost of the mechanism to the principal
agent:

∑
ω,x

pω,x · uω,x.

There are naturally cases when it is impossible to satisfy
the constraints. The following proposition gives a sufficient
condition for infeasibility in the single agent case:

Proposition 1. If there exist x, x′ ∈ X and α ≥ 0 s.t. x 6=
x′ ∀ω pω,x = α · pω,x′ , then there is no way to satisfy
truth-telling constraints for x and x′ at the same time.

Proof:
When looking at the two truth-telling constraints forx, x′

we get:0 <
∑
ω

pω,x · (uω,x − uω,x′) < 0 which is a contra-

diction.

We can regard this feasibility condition as a requirement
of independence between the vectors~px , (pω1,x . . . pωk,x)

of any two differentx, x′. We shall later see that a high sim-
ilarity between these vectors actually limits the robustness
of the mechanism.

Next, we shall see that if the condition described in propo-
sition 1 does not hold, we can alway construct a proper pay-
ment scheme. Moreover, once we have some working pay-
ment scheme, we can easily turn it into an optimal one with
a cost ofc.

Proposition 2. If the probability vectors ~px are pairwise in-
dependent, i.e., ∀x, x′ there is no λ such that ~px = λ · ~px′ ,
then there is a proper payment scheme with a mean cost as
close to c as desired. This solution is optimal, due to the
individual rationality constraint.

Proof: We can easily build an optimal solution by using a
strictly proper scoring rule:

uω,x = α · S(Pr(ω|x), ω) + βω (4)

for some positiveα, and some valueβω. Since the indepen-
dence relation holds for every pairx, x′, the probabilities
Pr(ω|x) are distinct and the scoring rule assures us of the
incentive for truth-telling regardless of values ofα, βω.

To satisfy the investment constraint, one can scale the
payments until the value of information for the agent jus-
tifies the investment. Setting

α > max
x′

[
c∑

ω,x

pω,x(S(Pr(ω|x), ω) − S(Pr(ω|x′), ω))
]

(5)
satisfies that constraint for everyx′. This is also shown
in (Miller, Resnick, & Zeckhauser 2005).

Finally, we can use theβω values to satisfy the remaining
individual rationality constraint tightly:

βω = β > c − α
∑

ω,x

pω,x · S(Pr(ω|x), ω) (6)

We have thus shown a payment scheme with the mini-
mal cost for every elicitation problem where different ob-
servations ofX entail different probability distributions of
ω. Later, we shall see that when considering robust mecha-
nisms, the principal agent must always pay more than this.

The MultiAgent Case
When constructing a mechanism with many participating
agents, we should naturally take into consideration the pos-
sible actions they are allowed to take. We will assume
here that agents cannot transfer information or utility among
themselves, and must act independently.

In the multiagent case, the mechanism designer has more
freedom in creating the mechanism. There is the option of
building a dominant strategy mechanism (where rational ac-
tion choice of an agent does not depend on the action of
any other agent), or solving with the weaker concept of a
Nash equilibrium (where a given set of actions is only opti-
mal if none of the agents deviates). It is possible to design
the information elicitation mechanism to work in dominant



strategies, simply by treating the variableXi of each agenti
independently and condition payments to agenti only on its
variable and the outcome variableΩ. The mechanism is then
designed for each agent as if it were a single-agent scenario.

However, it is also possible to design the mechanism to
work only in equilibrium, by conditioning payments to agent
i on the reports of all other agents as well. Each choice
yields a different linear program that needs to be solved in
order to find appropriate payments. This gives the designer
further degrees of freedom with which to operate. There
are cases where a dominant strategy mechanism does not
exist, but a mechanism that works in equilibrium does. The
following table presents such a scenario for two agents.

x1 x2 Pr(x1, x2) Pr(ω = 1|x1, x2)
0 0 1/4 0
0 1 1/4 1-δ
1 0 1/4 1
1 1 1/4 δ

The elicitation scenario depicted here describes two ran-
dom bits, each belonging to a different agent. The princi-
pal’s variableΩ is almost the XOR of the bits of the two
agents.δ is assumed to be positive but small.

A dominant strategy mechanism for agent 2 does not ex-
ist according to Proposition 1, sincePr(Ω = ω|X2 = 1) =
Pr(Ω = ω|X2 = 0) which makes it impossible to induce
truth-telling for the agent when conditioning the payments
only on its report and onω. However, given agent 1’s report,
ω is determined almost with certainty. This allows for a sim-
ple mechanism for which truth-telling is a Nash equilibrium:
both agents get a payment if the result matches the XOR of
their reported bits, and a penalty if it does not.

A Mixture of Solution Concepts A common problem
with mechanisms that work in equilibrium only, is that there
may be more than one equilibrium in the game. The mecha-
nism we have just described is no different. Consider, for ex-
ample, the case whereδ = 0. The strategy of always saying
the opposite of the actual result is also in equilibrium when
used by both players. A possible solution is to construct a
dominant strategy solution for some players, and design the
solution for the other players to ensure that good behavior is
the best response to the dominant strategy of the first group.

For example, we can design a mechanism for the scenario
in the previous table for the case of a positiveδ in the follow-
ing manner: agent 1’s payments are conditioned only on its
own reports in such a way as to induce good behavior. Such
a mechanism is possible for agent 1, since the variableΩ is
slightly biased to match the variableX1. Agent 2’s payment
is then designed with the assumption that agent 1’s informa-
tion is known. In that case, agent 2 can rationally decide that
agent 1 is going to tell the truth, and decide to do the same
in order to maximize its utility.

This example can be generalized to a scenario with more
agents. Once some order≺ is imposed over the agents, the
mechanism can be designed so that the payment to agenti
will depend on its own report, onΩ, and on any other agent
j for which j ≺ i. Such a mechanism has only a single
Nash equilibrium, and is thus more appealing. The problem

is that such a mechanism may not always exist, since we are
conditioning payments on less than all the available infor-
mation. The order≺ that is imposed on the agents is also
important, and different orders may certainly lead to differ-
ent mechanisms. Later in this paper we shall discuss another
appealing property of mechanisms constructed in this man-
ner: they lead to finite belief hierarchies when agents need
to reason about one another’s unknown beliefs.

Building Belief-Robust Mechanisms
We shall now relax the assumption of a commonly known
probability distribution, which we have used so far. We will
instead assume that agents have “close” notions of the gov-
erning probability distributions. We denote the beliefs ofthe
mechanism designer bŷp and the belief of a participating
agent byp = p̂ + ǫ, whereǫ is small according to some
norm. We have opted for theL∞ norm3 for this paper, be-
cause it is easily described using linear constraints. Other
norms may also be used, and will yield convex optimization
problems that are not linear.

The Robustness Level of a Payment Scheme
Definition 1. We shall say that a given payment scheme
uω,x is ǫ-robustfor an elicitation problem with distribution
p̂ω,x if it is a proper payment scheme with regard to every
elicitation problem with distribution p̂ω,x + ǫω,x such that
‖~ǫ‖∞ < ǫ, and is not proper for at least one problem in-
stance of any larger norm.

The definition above is very conservative, and requires
feasibility for every possible difference in beliefs. Another
possible approach is to give a probability over possible be-
liefs of the agents involved and require that the mechanism
work well in a large-enough portion of the cases.

Determining the Robustness Level of a Mechanism We
can calculate the robustness levelǫ of a given mechanism by
solving a linear programming problem for every constraint.
We do this by looking for the worst-caseǫω,x, which stands
for the worst possible belief that the participating agent may
hold. For example, we can write the following program to
find the worst case for one of the truth-telling constraints:

min ǫ s.t.∑
ω

(p̂ω,x + ǫω,x)(uω,x − uω,x′) ≤ 0

∀x, ω p̂ω,x + ǫω,x ≥ 0∑
ω,x

ǫω,x = 0

∀x, ω −ǫ ≤ ǫω,x ≤ ǫ

In the program above, onlyǫ andǫω,x are variables. The
linear problems for other constraints are easily built by sub-
stituting the first constraint above, with the negation of one
of the constraints in the original design problem. Once we
have solved similar linear programs for all the constraintsin
the original design problem, we take the minimalǫ found for
them as the level of robustness for the mechanism. The so-
lution also provides us with a problem instance of distanceǫ
for which the mechanism would fail.

3This norm simply takes the maximum over all coordinates.



Finding a Mechanism With a Given Robustness Level
We can try and find a payment scheme with a given robust-
ness levelǫ using the following stochastic program:

min
∑
ω,x

p̂ω,x · uω,x

s.t. ∀x 6= x′
∑
ω

pω,x(uω,x − uω,x′) > 0
∑
ω,x

pω,x · uω,x > c

∀x′
∑
ω,x

pω,x(uω,x − uω,x′) > c

where: ∀x, ω pω,x = p̂ω,x + ǫω,x

pω,x ≥ 0 ;
∑
ω,x

pω,x = 1

−ǫ ≤ ǫω,x ≤ ǫ

The program considers all distributionsp that are close to
p̂ up toǫ, according to theL∞ norm. It is solvable in poly-
nomial time using convex programming methods, as shown
in (Ben-Tal & Nemirovski 1999).

The Cost of Robust Mechanisms We have already seen
that for the program instance for which∀ω, x ǫω,x = 0
(which corresponds to the original, non-robust design prob-
lem), a payment scheme that costs only infinitesimally more
thanc always exists (if any mechanism exists). A robust pay-
ment scheme, however, is required to cope withany possible
belief variation and will cost more to implement.

Consider a mechanism with an expected cost ofγ =∑
ω,x

p̂ω,x · uω,x. Since it is not possible (due to the other

constraints) that alluω,x are 0, then there exists a perturba-
tion of beliefsǫω,x which is negative for the largestuω,x and
is positive for the smallest one, which then yields a strictly
lower payment thanγ according to the belief of a partici-
pating agent. Therefore, in order to satisfy the individual
rationality constraint,γ must be strictly larger thanc, and
the buyer must pay more in expectation.

The Robustness Level of an Elicitation Problem
We shall often be interested in finding the most robust mech-
anism possible for a given scenario. We therefore define the
robustness level of theproblem in the following manner:

Definition 2. The robustness levelǫ∗ of the problemp̂ is
the supremum of all robustness levels ǫ for which a proper
mechanism exists:

ǫ∗ , sup
~u

{ǫ|~u is an ǫ-robust payment scheme for p̂}.

To find the robustness level of a problem, one can perform
a binary search; the robustness level is certainly somewhere
between 0 and 1. One may test at every desired level in be-
tween to see if there exists a mechanism with some specified
robustness by solving the stochastic program above. The
space between the upper and lower bounds is then narrowed
according to the answer that was received.

As in the non-robust case, the design of a robust single-
agent mechanism relies only on the truth-telling constraints:

Proposition 3. If a given solution uω,x is ǫ-robust with re-
spect to the truth-telling constraints only, then it can be
transformed into an ǫ-robust solution to the entire problem.

Proof: [sketch] We achieve this by scaling and shifting the
solution to add robustness to the other constraints in a man-
ner similar to equations 5 and 6. In this case the payments
are transformed to satisfy the requirements for every possi-
ble~ǫ with a small enough norm.

A Bound for Problem-Robustness A simple bound for
robustness of the problem can be derived from examining
the truth-telling conditions. In fact, Proposition 1 for non-
robust mechanisms can be viewed as a specific case of the
following proposition for 0-robust mechanisms:

Proposition 4. The robustness level ǫ∗ of a problem p̂ can
be bounded by the smallest distance between a vector p̂x and
the optimal hyperplane that separates it from p̂x′ :

ǫ∗ ≤ min
x,x′

||p̂x − (p̂tr
x · ~ϕx,x′) · ~ϕx,x′ ||∞

~ϕx,x′ =
p̂x + p̂x′

||p̂x + p̂x′ ||2
The optimal separating hyperplane is a hyperplane that sep-
arates the points and is of maximal (and equal) distance
from both of them.

Proof: [sketch] If there existx, x′ that give distanceǫ to the
hyperplane then the vectorsp̂x, p̂x′ can be perturbed towards
the hyperplane with a perturbation of normǫ, until they are
linearly dependent. For this problem instance, according to
Proposition 1, there is no possible mechanism.

In the case where|Ω| = 2, the vectorŝpx are situated in a
two-dimensional plane, and it can be shown that the bound
given above is tight — the problem robustness is determined
exactly by the closest pair of vectors.

Robust Mechanisms for Multiple Agents
Designing robust mechanisms for multiple agents is a far
more complex issue. The designer must now take into ac-
count not only the possible beliefs of agents about the prob-
abilities of events, but also their beliefs about the beliefs
of other agents. This is especially true when constructing
a mechanism that will work only at an equilibrium. For
an agent to believe that some strategy is in equilibrium, it
must also be convinced that its counterparts believe that their
strategies are in equilibrium, or are otherwise optimal. This
will only occur if the agent believes that they believe that it
believes that its strategy is in equilibrium — and so on.

Any uncertainty about the beliefs of other agents grows
with every step up the belief hierarchy. If agent A knows
that all agents have some radiusǫ of uncertainty in beliefs,
and its own belief is some probability distributionp, then
it is possible that agent B believes the distribution isp′ and
further believes that agent A believes the distribution is some
p′′ which is at a distance of up to2ǫ from p. With an infinite
belief hierarchy, it is therefore possible to reach any proba-
bility if we go high enough in the hierarchy.

A possible solution to this problem is to use the mixture of
solution concepts we have seen before. If each agent’s pay-
ment only depends on the actions of agents before it accord-
ing to some order≺, then it only needs to take their beliefs
into consideration when deciding on a strategy. The neces-
sary belief hierarchy is then finite, which limits the possible



range of beliefs about beliefs. The most extreme case of
this is to design the mechanism for dominant strategies only.
Naturally, a solution constructed in such a way may be less
efficient or may not exist at all. One may alternatively con-
sider bounded rational agents that are only capable of look-
ing some finite distance into the hierarchy as possible sub-
jects for the mechanism design. An extreme example would
be agents that believe that everyone else shares their basic
belief about the world, and do not reason about the beliefs
of others at all (but may, in fact, have different beliefs).

Related Work
Research in artificial intelligence and on the foundations of
probability theory has considered probabilities as beliefs,4

and several models have been suggested — for example,
probabilities over probabilities (Pearl 1988). Cases where
agents have uncertainty about the utility functions in the
world were examined in (Boutilier 2003); an agent acts ac-
cording to the “expected expected utility” it foresees as it
takes into consideration its own uncertainty.

(Conitzer & Sandholm 2002) proposed applying auto-
mated mechanism design to specific scenarios as a way of
tailoring the mechanism to the exact problem at hand, and
thereby developing superior mechanisms.

Other uses for information elicitation exist in reputa-
tion systems (Miller, Resnick, & Zeckhauser 2005), and
in multi-party computation (Smorodinsky & Tennenholtz
2005), where some function of the agents’ secrets is com-
puted, but agents may have reservations about revealing or
computing their own secret. Yet another area in which infor-
mation elicitation is implemented is polling. The informa-
tion market (Bohm & Sonnegard 1999; Wolfers & Zitzewitz
2004) approach has been suggested as a way to get more
reliable results than regular polls. There, agents buy and
sell options that will pay them an amount that is dependent
on the outcome of some event (like some specific candidate
winning an election).

Conclusions and Future Work
We have discussed discrete information elicitation mecha-
nisms and have shown that such mechanisms can be effi-
ciently designed to be robust with regard to a wide range of
beliefs held by the participating agents. The robust mech-
anisms are naturally more expensive than their non-robust
counterparts. We also discussed some of the complications
arising from designing the mechanism for multiple partici-
pants, and have shown some cases under which these com-
plications can be handled easily. Further exploration into
the infinite belief hierarchies implied by the Nash equilib-
rium concept is still required. It would also be interestingto
try and build other belief-robust mechanisms, perhaps in the
setting of preference elicitation.

Another interesting direction to explore is the area of col-
lusion among agents. If agents share information and trans-
fer payments, it is going to be harder to design working
mechanisms. Here, there are several levels of cooperation
possible for the agents, ranging from only helping other
agents if there is personal gain in doing so, to helping other

4Leading to controversy between Bayesians and Frequentists.

agents when it is beneficial to the coalition as a whole. Ex-
ploring the information elicitation problem from a coalition
formation point of view would also be interesting, as it can
be expected that as agents reveal the values of their variables,
the coalitions they would want to join (in order to manipu-
late the mechanism) may change depending on the result.

We have used tools of stochastic programming to solve
for robust solutions, but have only scratched the surface of
potential uses of these tools. Other alternative problem for-
mulations can be explored, especially formulations that in-
clude more detailed information about the possible beliefs
of agents. These would fit quite well into the mainstream
work done in stochastic programming.

Finally, it would be interesting to explore the area of
partially-effective mechanisms. These may fail to induce
truth-telling by agents in some cases, and only work well
with some probability. One might explore the tradeoff be-
tween the confidence level of the designer in the mechanism,
and its robustness and cost.
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