
Competing Schedulers

Itai Ashlagi
Harvard Business School

Harvard, MA, USA
iashlagi@hbs.edu

Moshe Tennenholtz
Microsoft Israel R&D Center

Herzlia, Israel and
Faculty of Industrial Eng. and Management

Technion–Israel Institute of Technology
Haifa, Israel

moshet@microsoft.com

Aviv Zohar
School of Eng. and Computer Science
The Hebrew University of Jerusalem

Jerusalem, Israel and
Microsoft Israel R&D Center

Herzlia, Israel
avivz@cs.huji.ac.il

Abstract

Previous work on machine scheduling has considered the case
of agents who control the scheduled jobs and attempt to min-
imize their own completion time. We argue that in cloud and
grid computing settings, different machines cannot be con-
sidered to be fully cooperative as they may belong to compet-
ing economic entities, and that agents can easily move their
jobs between competing providers. We therefore consider a
setting in which the machines are also controlled by selfish
agents, and attempt to maximize their own gains by strategi-
cally selecting their scheduling policy. We analyze the equi-
libria that arise due to competition in this 2-sided setting. In
particular, not only do we require that the jobs will be in equi-
librium with one another, but also that the schedulers’ policies
will be in equilibrium. We also consider different mixtures of
classic deterministic scheduling policies and random schedul-
ing policies.

1 Introduction
With the advent of cloud computing, it has become more and
more common for users requiring resource intensive compu-
tation to send their jobs to be executed on some remote ma-
chine. Cloud computing has often been considered a coop-
erative setting in which only a single entity, namely the ser-
vice provider, controls all the processing power. However, it
is becoming more common that such services are owned and
controlled by different entities – e.g., various large commer-
cial enterprizes.1 We therefore believe that when modeling
the behavior of rational agents in a market for computation
cycles, it is crucial to also consider the behavior of the ma-
chine owners.

Previous work on incentives in scheduling domains has
mostly focused on the behavior of agents from one side
of the market. In these settings, the machines use a fixed
scheduling policy, and the agents try to maximize their util-
ity by selecting the machine on which their job will run.

In cooperative settings, where all machines are owned by
the same entity, it is reasonable to expect that the owner will
attempt to balance the load on all machines and minimize

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Indeed, the competition in cloud computing between Mi-
crosoft Azure, Google and Amazon web services fits squarely into
this setting.

the makespan. However, in a market setting, where machine
owners get paid for running each job, the goal of each ma-
chine owner is to maximize revenue, and thus to attract more
jobs at the expense of the competition. In this case each
owner actually attempts to maximize the running time of his
machine.

Our model considers m identical machines, and n jobs.
Each job has a running time that is known in advance, and
is controlled by a single agent that attempts to minimize its
completion time by sending it to the machine that will exe-
cute it as early as possible. On the other hand, each machine
is controlled by an agent that can change the scheduling pri-
ority of the machine. For simplicity, we assume that there
is a fixed cost per computation cycle, and that this price is
identical for all machines. Under this assumption, optimiz-
ing the revenue obtained by the machines amounts to max-
imizing their total running time. We define the model more
formally in the following section.

We start with a setting in which different machines use
different deterministic scheduling policies, taken from a
broad set of such deterministic policies. Namely, any fixed
ordering on the available jobs can serve as a scheduling pol-
icy. Interestingly, we show that for any selection of such
deterministic scheduling policies there exists a pure Nash
equilibrium of the jobs. The only study we are aware of
that refers to the existence of Nash equilibria in a setting
where schedulers have a wide variety of policies to select
from presents negative results (Kollias 2008).

Next, we consider schedulers that can use a standard de-
terministic policy or the random scheduling policy (Kout-
soupias 2003). We show that if each machine uses either the
random policy or the shortest-job-first policy there exists a
pure Nash equilibrium. Similarly, a pure Nash equilibrium
exists if each machine uses either the longest-job-first policy
or the random policy. We then move on to the most elaborate
setting, in which the schedulers’ policies themselves need to
be in equilibrium. In general, studies of competition among
mechanisms are quite rare in the literature, and we are not
aware of any other discussion of that topic in the context of
competing schedulers. Surprisingly, we are able to show the
existence of such an equilibrium whenever the schedulers
can choose among any set of two policies. We also show
that this is not true when there are more than two policies to
select from.

2 Related Work
There are two main lines of research our work fits into. One
is the work dealing with selfish job scheduling. Classical
examples of game-theoretic studies in this regard are in the
work by (Koutsoupias and Papadimitriou 2009) and work
that followed and extended these results to unrelated ma-
chines (see e.g. (Azar, Jain, and Mirrokni 2008) and ref-
erences therein). Much of this work concentrated on the
study of the price of anarchy in restricted scheduling set-
tings, rather than on a general game-theoretic analysis. A
non-trivial existence of pure Nash equilibrium under ran-
dom ordering where a participant can choose more than one
resource, has been shown in (Penn, Polukarov, and Tennen-
holtz 2009) in the context of congestion games.

The other relevant line of research has to do with com-
peting mechanisms. The literature on competing mech-
anisms is not rich. A few exceptions in the context of
auctions can be found in (Burguet and Sakovics 1999;
Monderer and Tennenholtz 2004). In that context full two-
stage equilibria do not exist even in restricted models. More
generally, the AI and multi-agent systems literature is full
with attempts of providing rigorous game-theoretic analy-
sis of settings originating from classical multi-agent sys-
tems (see (Wooldridge 2000; Shoham and Leyton-Brown
2009)). Interestingly, while competition in resource selec-
tion appears frequently in that literature (e.g. (Galstyan, Ko-
lar, and Lerman 2003)) and related computational aspects of
multi-agent scheduling (e.g. (van Hoevel et al. 2007) are
also frequently discussed, the analysis of actual competing
schedulers has been mainly neglected.

3 The Model
Let M = {1, . . . , m} be the set of machines and N =
{1, 2, . . . , n} be the set of jobs. Every job i ∈ N can be
processed on any of the machines in ti > 0 time units and
each job or machine is controlled by a different agent (we
therefore make no distinction between the agent and the job
or machine that it controls).

A scheduling policy receives as input a subset of the
jobs, and outputs the order in which they will be processed.
Hence, the output of a scheduling policy is a vector o =
(o1, . . . , ok), such that oi ∈ N for every i, and job oi is
processed in the ith place.

For any set T , denote by Π(T) the set of all ordered vec-
tors (permutations) of the elements in T .

Definition 1 A (deterministic) scheduling policy is a func-
tion f such that for every nonempty subset of jobs T , f(T) ∈
Π(T) is some permutation of the jobs in T.

To illustrate, suppose machine i uses policy f , and sup-
pose f({2, 4, 3}) = (3, 4, 2), then if exactly the subset of
jobs {2, 4, 3} choose machine i, job 3 will be processed first,
followed by job 4 and job 2.

Definition 2 We say that a scheduling policy is consistent
if for every two jobs i, j such that i 6= j, job i is always
scheduled before job j, or j is always scheduled before i (in
all cases where they are both on the same machine).

A randomized policy is then defined as follows:
Definition 3 A randomized scheduling policy assigns each
possible permutation of the jobs some probability. I.e., for
every set of jobs T , the policy assigns a probability function
over Π(T).

For convenience we will denote three natural scheduling
policies as follows:

• S: processes jobs from the shortest to the longest.
• L: processes jobs from the longest to the shortest.
• R: processes jobs in a random order, with equal probabil-

ity for each permutation.

In the two deterministic policies above, we assume that
ties are broken in favor of the job with the lowest index. I.e.,
if two jobs have the same length then the one with the lower
index has a higher priority.

4 An Equilibrium of Jobs
In this section we analyze the one-stage game in which each
machine has a fixed scheduling policy (and is therefore not
acting strategically) and every job selfishly chooses the ma-
chine on which it will be executed.

Every profile of scheduling policies f = (f1, . . . , fm) de-
fines a game for the jobs as follows. The action set of the
agent associated with each job i is Xi = M (i.e., the ma-
chine the job will run on). Denote by X the set of the action
profiles. That is X = ×n

i=1Xi.
For every action profile of the jobs x, and for every pro-

file of scheduling policies f , we denote the completion time
of job i by cfi (x) (i.e., the amount of time needed to com-
plete job i and all jobs that chose the same machine and are
scheduled before it). We assume that every agent wishes to
minimize the completion time of its own job.

Definition 4 An action profile x = (x1, . . . , xn) is a
pure Nash equilibrium in the game with policies f =
(f1, . . . , fm) if for every job i cfi (xi, x−i) ≤ cfi (yi, x−i) for
every yi ∈ Xi.

For any two scheduling policies φ, ψ, we call the game
f = (f1, . . . , fm) a (φ, ψ)-game if for every i, fi is ei-
ther the scheduling policy φ or ψ (we thus define (S, L)-
games,(S,R)-games and (L,R)-games).

In the next section we study the one-shot game in which
each machine uses a consistent deterministic policy.

Equilibria when Machines use Deterministic
Policies
Theorem 1 There exists a pure equilibrium for the jobs in
every game in which the machines use deterministic and
consistent scheduling priorities.

We will prove Theorem 1 by construction. The following
algorithm computes an equilibrium in the game. During the
algorithm we will add jobs to the machines one at a time. For
every machine i we have a variable qi which denotes the load
on machine i so far (total amount of time the machine will
process jobs). As the machines are empty at the beginning
we initialize qi = 0 for every i.

Algorithm ”Compute Deterministic Job Eq.”
1. Input: A scheduling game.

2. Until all jobs are assigned do:

(a) let µ be a machine with an earliest completion time qµ

(if some machines are tied, choose arbitrarily).
(b) let job i be the job that has the highest priority on µ out

of all unassigned jobs.
(c) Assign job i to machine µ (thereby increasing qµ by ti).

Claim 1 The algorithm above constructs a pure equilibrium
in any job scheduling game with fixed deterministic consis-
tent policies.

Proof: Observe some arbitrary job i that has been placed
on machine µ. Notice that when job i is placed, all jobs
that are already assigned to machines have a higher priority.
This is because every time a job is placed on some machine it
has the highest priority on that machine among all unplaced
jobs and so, if i is placed after j has been placed, then job i
cannot have higher priority on j’s machine. Therefore, when
i is placed on µ its running time is minimized (it will start
later on all other machines, as µ is chosen to be the machine
with the earliest job completion time). Since Job i is the
job with the highest priority of all unplaced jobs when it is
placed on µ, all jobs that are placed on µ later will run after
Job i. Therefore, we have shown that i’s starting time on µ
is the earliest time it will have among all machines.

In particular, from the theorem above, it follows that there
exists an equilibrium for the jobs in any scheduling scenario
in which the machines use only S,L strategies. With random
strategies things get more complicated and the existence of
a pure equilibrium is harder to show. In the next two sec-
tions we will prove the existence of pure Nash equilibrium
in (L,R) and (S,R) games.

An Equilibrium for the Jobs in L-R Games
Note that when using a machine of type R, each job has
an expected completion time that is exactly its own running
time plus half the running time of all other jobs that are us-
ing this machine. This is because, for a fixed job j, any other
job j′ will precede j with probability 1

2 .

Theorem 2 There exists a pure equilibrium for the jobs in
every L-R game.

We shall prove this theorem in stages. First, by showing
an algorithm that reaches an equilibrium in R-type ma-
chines, and then an algorithm that reaches an equilibrium in
a setting where both L- and R-type machines are used.

Algorithm ”Balance R-machines”:
Given a placement of jobs on R-type machines do:

1. Let i be the job with the highest expected starting time.

2. Move job i to the machine that will give it the lowest ex-
pected starting time (if the current machine gives the best
starting time, leave the job on the same machine).

3. If job i stayed on the same machine, then stop. Otherwise,
return to stage 1.

Claim 2 The algorithm ”Balance R-Machines” terminates.

Proof: The algorithm continually moves jobs to the ma-
chine that will give job i the earliest starting time. If this is a
different machine than the original machine of that job, then
the expected starting time it gives job i is also half the to-
tal running time of that machine. That is, the machine with
the lowest running time has its running time increased (and
if there are several machines with the same lowest running
time, then the number of such machines is decreased). No-
tice that the machine job i leaves has a worse running time
after it does so, otherwise that job would not have left.

Claim 3 When the algorithm ”Balance R-Machines” termi-
nates, the jobs are in equilibrium.

Proof: Let us assume to the contrary (for the purpose of
reaching a contradiction) – that there is a job i that gains
by moving to another machine. In particular, job i would
also gain from a move to the machine that terminates first,
because its expected termination time on that machine would
be the lowest. Therefore, any job that starts running after
job i would also wish to move to the earliest terminating
machine (and is not already on that machine, otherwise, it
will not be starting after job i). This especially applies to
the job that has the highest expected starting time. We reach
a contradiction: The job with the highest expected running
time wishes to move to the earliest terminating machine, and
so the algorithm could not have terminated.

The following claim gives a useful property of the algo-
rithm that we will use later on:

Claim 4 Let T be the termination time of the earliest ter-
minating machine at some configuration of jobs on R-
machines. Then after running the ”Balance R-Machines”
algorithm, the earliest terminating machine terminates at a
time ≥ T .

The proof is immediate from the arguments made in
Claim 2.

We now proceed to show that there exists an equilibrium
for any setting that involves L-R machines. The following
algorithm reaches this equilibrium:

Algorithm ”Construct L-R Equilibrium”
Initialization: Place all jobs only on R-machines, and use
the ”Balance R-machines” algorithm to get them in an equi-
librium (when only R-Machines are allowed).
While there exists a job that wishes to move from an R-
machine to an L-machine iterate over the following actions:

1. Let i be the largest job that that gains from moving to an
L-machine, and let µ be the current machine of job i.

2. Move job i to the L-machine that would give it the earliest
starting time under the current configuration.

3. Move any job that is running on an L-machine, and has a
shorter running time than i to machine µ.

4. Run the ”Balance R-machines” algorithm to get the jobs
on the R-machine into equilibrium (when ignoring the L-
machines and jobs currently on them).

Claim 5 The algorithm ”Construct L-R equilibrium” termi-
nates.

Proof: Without loss of generality, let us assume that the
jobs 1, . . . , n are sorted in decreasing order of size (i.e., that
t1 ≥ t2 ≥ . . . ≥ tn). For a given allocation A of jobs to
machines let the vector ~v(A) = (v1, v2, . . . , vn) be defined
as follows: vi = 1 if job i is on an L-machine. Otherwise,
vi = 0. Now, notice that during each iteration of the algo-
rithm, a job is moved from an R-machine to an L-machine,
and (only) smaller jobs are moved from R-machines to an
L-machine. This implies, that in every iteration of the algo-
rithm, if it moved from state A to state A′ then ~v(A) is lexi-
cographically smaller than ~v(A′). The value of ~v() is there-
fore strictly increasing (lexicographically) and since the the
vectors are all bounded from above (by the vector of all 1’s)
the algorithm must terminate.

Claim 6 When the ”Construct L-R equilibrium” algorithm
terminates, the jobs on all machines are in equilibrium.

Proof: First, notice that if the algorithm has terminated,
then any job on an R-machine does not gain by switch-
ing machines. It does not gain by switching to another R-
machine because the last thing that was executed was the
”Balance R-machines” algorithm, and it does not gain by
switching to an L-machine, because in this case the algo-
rithm would not terminate.

Let us therefore consider some job i on an L-machine.
Notice, that job i cannot gain from switching to another
L machine. This is because job i was placed on its most
preferred L-machine (when it was last moved from an R-
machine), and no longer job has been placed on or removed
from an L-machine after that point in time.

We must therefore consider the possibility that some arbi-
trary job i wishes to move from an L to an R-machine. Let
k be the shortest job on any L-machine. If job i gains by
moving to an R-machine, then so must job k. However, by
construction, job k must be the last job that was moved to
an L-machine. Let T be the expected starting time of job
k before it was moved to an L-machine (in the last itera-
tion of the algorithm). When job k was moved, the expected
starting on its current machine was the lowest it could get
(under the current configuration) from any R-machine. As
it was moved, any shorter job that was assigned to any L-
machine was moved to the R-machine job k was taken off
of. This can only increase the minimal termination time
of the R-machines. Next, the ”Balance R-machines” algo-
rithm was executed for the last time. According to Claim 4,
this can only increase the earliest termination time of the R-
machines. Therefore, if job k moves back it will have an
expected starting time ≥ T , which is less than it gets on an
L-machine. A contradiction.

An Equilibrium for the Jobs in S-R Games
Theorem 3 There exists a pure equilibrium for the jobs in
every S-R game.

We present the algorithm that finds such an equilibrium,
but omit the remainder of the proof due to lack of space.

Algorithm ”Construct S-R Equilibrium”
Input: A scheduling game in which all machines use S or R
scheduling policies only.
1. Sort all jobs according to size (where jobs of equal length

are ordered consistently with their execution priority on
the S-machines).

2. While there are any un-assigned jobs, do:
(a) Let s and l be the shortest and longest unassigned jobs.

(If there is only 1 remaining unassigned job then it may
very well be that l = s)

(b) Let µ be the machine that job s prefers the most (with
ties broken in favor of S-machines).

(c) If µ is an S-machine then assign job s to it. Otherwise
assign job l to µ.

Since a job is assigned to a machine (and never taken off)
at every iteration of the algorithm, it is clear that the algo-
rithm terminates.

Claim 7 Algorithm ”Construct S-R Equilibrium” termi-
nates with an assignment of the jobs to the machines which
is a pure Nash Equilibrium.

5 The Two-Stage Game
In this section we study the following two stage game in
which the machine owners can choose their own policies,
and do so strategically to attract jobs. In the first stage every
machine owner i simultaneously chooses a policy from some
given set of policies Fi, and in the second stage, after the
choices of the machine owners become common knowledge
the job owners simultaneously choose which machine they
will send their job to. Consequently, the strategy of each
machine owner i is the set of all scheduling policies Fi. A
strategy of every job j is now a function xj : ×m

i=1Fi → M ,
i.e. for every profile of policies (f1, . . . , fm) job j chooses a
machine in M . Hence, x(f) = (x1(f), . . . , xn(f)) denotes
the action profile of the jobs when the machines profile is f .
We denote by qi(x(f)) the total load on machine i when the
action profile is x(f).

We assume that every machine owner wishes to maximize
the amount of time it operates, i.e. the total length of jobs it
processes, and so the utility of machine i is defined as:

ui((f1, . . . , fm), (x1, . . . , xn)) = qi(x(f))

We denote the above two stage game by G(F1, . . . , Fm).

Definition 5 A tuple (f1, . . . , fm, x1, . . . , xn) is a
subgame-perfect equilibrium in the game G(F1, . . . , Fm) if

1. for every machine i and for every gi ∈ Fi,
ui((fi, f−i), (x1, . . . , xn)) ≤ ui((gi, f−i), (x1, . . . , xn))

2. the profile of strategies (x1(f), . . . , xn(f)) is an equilib-
rium in the game f = (f1, . . . , fm).

We are now ready to show the following result:
Theorem 4 There exists a subgame-perfect equilibrium in
every two-stage-game in which the machines are restricted
to any two strategies for which the job-game has an equilib-
rium.

The proof of Theorem 4 is by construction. In particu-
lar, we will show an algorithm that finds a subgame-perfect
equilibrium in this game.

Let φ and ψ be two policies such that for any job-game in
which each machine chooses either φ or ψ there exist a pure
Nash equilibrium. For every profile f in which fi ∈ {φ, ψ}
denote by φ(f) and ψ(f) the sets of machines that choose φ
and ψ respectively in a given pure equilibrium.

The algorithm below constructs a subgame perfect equi-
librium in the two stage game in which each machine can
choose among the scheduling policies ψ and φ. It consists
of two stages: In the first stage we construct the equilibrium
from the point of view of the agents who control the jobs.
For every profile f of the machines, we define an assign-
ment of the jobs to the machines that is in equilibrium from
the perspective of the jobs. Notice that since machines that
choose the same policy are identical, several equilibria ex-
ist, and we have the freedom to permute the entire bundle of
jobs between two machines that are using the same policy.
We can use this fact to construct an equilibrium with the fol-
lowing properties: if for two profiles f , f ′ of the machines
we have that |ψ(f)| = |ψ(f ′)| and |φ(f)| = |φ(f ′)|, then the
jobs will in fact use the same equilibrium, up to re-naming
of the machines. In addition, we will permute the bundles
among machines that use the same scheduling policy so that
we give more utility (a later completion time) to machines
that chose φ if they have a lower index, and more utility to
machines that chose ψ if they have a high index.

At the second stage of the algorithm we begin with a pro-
file in which all machines choose ψ and we change the pro-
file of the machines one by one, starting with the machines
with the lowest index. Each machine switches to policy φ as
long as it derives benefit from the change. Our construction
guarantees that no machine that changed its profile to φ will
ever want to change back to ψ.

Algorithm ”Find Machine and Job Equilibrium”
1. For every profile of policies f compute an equilibrium for

the jobs x(f) with the following properties:
(a) for every pair of machines i, i′ ∈ φ(f), qi ≤ q′i if and
only if i ≥ i′, and
(b) for every couple of machines i, i′ ∈ ψ(f), qi ≤ q′i if
and only if i ≤ i′.
(c) For every two profiles f , f ′ if |φ(f)| = |φ(f ′)| and
|ψ(f)| = |ψ(f ′)|, then there exists a permutation π such
that πφ(f) = φ(f ′) and πψ(f) = ψ(f ′) and πx(f) =
x(f ′).

2. Initialize f to be f = (ψ, . . . , ψ). Repeat the following:

• If ψ(f) = ∅, output (f ,x).
• Let i be the machine with the lowest index in ψ(f). If

qi(x(f)) < qi(x(f−i, φ)) then let fi = φ. Otherwise
output (f ,x)).

Before we prove the correctness of the algorithm, we il-
lustrate its execution using an example:

Example 1 Consider a two stage game with 3 machines
where each machine can choose either S or L, and 5 jobs

Figure 1: An example of the computation to find an equi-
librium of the two-stage game. The machines use strate-
gies S, L only, and jobs that appear lower in the diagram are
scheduled earlier. The profile (S, S, L) is the one that yields
the equilibrium in the 2-stage game.

that have running times of 1.5, 2, 3, 4 and 5. Figure 1 de-
picts the four possible ways to select strategies for the 3 ma-
chines (all other options have the same number of machines
that choose S,L and are thus built equivalently). In each of
the four cases, the jobs are assigned to the machines in an
assignment that is stable from the perspective of the own-
ers of the jobs. For each profile of the machines, the equi-
librium for the jobs is found (using the algorithm we have
shown before) and the bundles of jobs on each machine are
swapped so that on L-machines the load will increase as
the index of the machine increases, and on S-machines, the
load will decrease. The algorithm then begins with all ma-
chines using the longest-first scheduling policy (Figure 1-
I), and all jobs in the equilibrium which is ordered as de-
scribed above. Then, one of the machines (the one with the
lowest index which is by construction worse off in the equi-
librium) switches to the shortest-first policy (Figure 1-II).
The jobs are again assigned in a stable manner and ordered
on the machines in the same manner (and so the machine
that switched will become the machine that is the worst off
among all S machines in this new configuration). Notice
that the machine that switched from L to S now has a later
completion time, and the change is thus adopted. The al-
gorithm then continues to switch yet another machine (the
second one) to the S scheduling policy (Figure 1-III). Once
again this machine gains from the change and the change
is adopted. Finally, when the last machine switches to the
S policy, its situation is worse (Figure 1-IV), and so the
algorithm rejects this change and terminates. The profile
(S, S, L) is the equilibrium for the machines.

Claim 8 Algorithm ”Find Machine and Job Equilibrium”
constructs an equilibrium in any (φ, ψ)-two-stage-game.

Proof: First note that the first step is feasible, i.e., it is pos-
sible to construct x(f) for every profile f in a manner that
will satisfy conditions (a) (b) and (c), since we can just per-
mute the machines that jobs are assigned to to get an equilib-
rium for the jobs with these properties. Since for every pro-
file the assignment of jobs is in equilibrium, then when the
algorithm halts, with a profile f that is the policy profile of
the machines, then x(f) is an equilibrium in the single stage

game f . We now show that at any step no machine that uses
a φ policy, is better off changing to the ψ policy. Suppose
machine i changed its policy from ψ to φ and let f be the
policy profile right after this change. By the construction of
x(f), qi(x(f)) ≤ qi′(x(f)) for every i′ ∈ φ(f). Moreover by
the construction qi(x(ψ, f−i)) = qi′(x(ψ, f−i′)) for every
i′ ∈ φ(f) since every i′′ > i′ for every i′′′ ∈ ψ(f). There-
fore, since i prefers φ given f−i every i′ ∈ φ(f) prefers φ
given f−i′ . Similarly, after the algorithm halts, then in the
final policy f every machine i ∈ ψ(f) prefers policy ψ over
φ given f−i.

If the machines are not constrained to use only two deter-
ministic scheduling strategies, there are settings for which
there is no pure equilibrium in the two stage game.

Theorem 5 There exists a two-stage scheduling game in
which the machines are allowed to use any deterministic
consistent strategy, but there is no pure strategy equilibrium.

Proof: In order to prove this result one needs to find a
set of jobs, together with a number of machines, such that
for every given profile of scheduling policies, there exists a
machine which is better off deviating from its policy in the
profile. We proved this theorem using a computer program
in the following setting: 2 machines and 5 jobs, where the
job lengths were t1 = 1, t2 = 2.5, t3 = 3, t4 = 4.01, and
t5 = 4.6.2 Our computer program iterated over all possible
profiles and found a machine that gains by deviating in each
case.

Even limiting the set of scheduling policies to exactly
three policies can result in a setting with no equilibrium:
Theorem 6 There exists a two-stage scheduling game in
which the machines are allowed to use only 3 determinis-
tic, consistent strategies, that has no pure equilibrium.
Proof: [sketch] Consider 2 machines and 7 jobs, where the
job lengths are 1, 2.5, 3, 4, 4.2, 5 and 7. Suppose the ma-
chines can choose one of the following three policies: S,
L and f̄ where f̄(N) = (6, 5, 2, 7, 4, 1, 3) and for every
T ⊆ N f̄(T) is the order in f̄(N) restricted to the jobs in T .
The reader can verify that in this case, one of the machines
will deviate in any profile of scheduling policies.

6 Conclusions and Future Work
We introduced a study of competitive schedulers. In par-
ticular, we looked at a 2-sided setting where both machines
and users are strategic. We have shown that equilibria exist
for the agents who control the jobs in a variety of situations,
and that there are pure equilibria when the machines are re-
stricted to sets of two policies.

The focus of our work is aimed at creating an initial
model for the competition that is beginning to emerge within
the growing world of cloud computing. This environment,
where service providers naturally compete and attempt to
attract customers is quite different from the setting where
a central entity controls all the machines. Our analysis has

2One useful property of the profile we chose for running the
program is that there are no ties in any assignment of the jobs to
the machines.

introduced some basic (and mostly positive) results on the
existence of pure strategy equilibrium in such settings.

There are many directions for future work, which include
some more detailed and elaborated settings with competing
schedules. For example: dynamic arrival of jobs, noisy ex-
ecution times, machine and job failures and incomplete in-
formation about job sizes can all be considered with respect
to a model with competing schedulers. We believe that due
to the recent emerging trends, the scenario of competitive
schedulers will become increasingly relevant, and that fur-
ther exploration in this direction will prove to be highly im-
portant.

References
Azar, Y.; Jain, K.; and Mirrokni, V. 2008. (almost) optimal
coordination mechanisms for unrelated machine schedul-
ing. In SODA ’08: Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, 323–332.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics.
Burguet, R., and Sakovics, J. 1999. Imperfect competition in
auction designs. International Economic Review 40(1):231–
47.
Galstyan, A.; Kolar, S.; and Lerman, K. 2003. Resource
allocation games with changing resource capacities. In In
Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, 145–152.
Kollias, K. 2008. Non-preemptive coordination mechanisms
for identical machine scheduling games. In SIROCCO ’08:
Proceedings of the 15th international colloquium on Struc-
tural Information and Communication Complexity, 197–
208.
Koutsoupias, E., and Papadimitriou, C. H. 2009. Worst-case
equilibria. Computer Science Review 3(2):65–69.
Koutsoupias, E. 2003. Selfish task allocation. Bulletin of
EATCS 81:79–88.
Monderer, D., and Tennenholtz, M. 2004. K-price auctions:
Revenue inequalities, utility equivalence, and competition in
auction design. Economic Theory 24(2):255–270.
Penn, M.; Polukarov, M.; and Tennenholtz, M. 2009. Ran-
dom order congestion games. Math. Oper. Res. 34(3):706–
725.
Shoham, Y., and Leyton-Brown, K. 2009. Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge Uni-
versity Press.
van Hoevel, W.-J.; Gomes, C. P.; Selman, B.; Lombardi, M.;
and Risorgimento, V. 2007. Optimal multi-agent schedul-
ing with constraint programming. In In Proceedings of the
Nineteenth Conference on Innovative Applications of Artifi-
cial Intelligence (IAAI).
Wooldridge, M. J. 2000. Reasoning about Rational Agents.
The MIT Press, Cambridge, Massachusetts.

