
Exploiting Problem Symmetries in State-Based Planners

Nir Pochter
School of Eng. and Computer Science
The Hebrew University of Jerusalem

Jerusalem, Israel
nirp@cs.huji.ac.il

Aviv Zohar
Microsoft Research

Silicon Valley
Mountain View, CA

avivz@microsoft.com

Jeffrey S. Rosenschein
School of Eng. and Computer Science
The Hebrew University of Jerusalem

Jerusalem, Israel
jeff@cs.huji.ac.il

Abstract

Previous research in Artificial Intelligence has identifiedthe
possibility of simplifying planning problems via the identifi-
cation and exploitation of symmetries. We advance the state
of the art in algorithms that exploit symmetry in planning
problems by generalizing previous approaches, and apply-
ing symmetry reductions to state-based planners. We suggest
several algorithms for symmetry exploitation in state-based
search, but also provide a comprehensive view through which
additional algorithms can be developed and fine-tuned. We
evaluate our approach to symmetry exploitation on instances
from previous planning competitions, and demonstrate that
our algorithms significantly improve the solution time of in-
stances with symmetries.

1 Introduction
Classical planning problems are notorious for the exponen-
tially large number of states that need to be navigated in or-
der for a solution to be found. Such problems, however,
often contain symmetries. In that case, many of the differ-
ent states in the search space are in fact symmetric to one
another, with respect to the task at hand, and the result of
searching through one state will inevitably be equivalent to
searches through all of its symmetric counterparts. Though
detecting and exploiting such symmetries would shrink the
search space, the actual exploitation of symmetries is made
difficult by the fact that symmetry detection is potentially
complex. All currently known algorithms for the highly re-
lated problem of finding graph automorphisms work in ex-
ponential time, in the worst case. The situation is worsened
by the fact that the graph on which we wish to detect auto-
morphisms is the huge search space that the planning prob-
lem defines; it does not typically fit into memory.

The idea of exploiting symmetries has appeared in model
checking, e.g., in work by Emerson and Sistla (1996), and
in the context of constraint satisfaction problems, begin-
ning with a seminal paper by Puget (1993). The most com-
mon approach uses additional constraints to break existing
symmetries (e.g., see (Walsh 2007)) and reduce the search
space to a more manageable size. Planning problems can be
reduced to various constraint satisfaction problems and to

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

propositional logic formulas. Some have tried to use this ap-
proach to apply symmetry reduction in search (Miguel 2001;
Rintanen 2003). Rintanen adds symmetry-breaking con-
straints to the propositional logic representation of transi-
tion sequences derived from planning problems to remove
symmetries from different points in the sequence. How-
ever, state-of-the-art planners usually employ a state-based
approach combined with heuristic search. It is unclear how
to directly translate knowledge in symmetry exploitation in
earlier planning systems and CSPs to improvements in to-
day’s most efficient planners.

A previous line of work by Fox and Long (1999; 2002)
has shown how to prune symmetries in planning via mod-
ifications of their GraphPlan-based algorithm (which is not
state-based). Another approach is to use symmetries to im-
prove heuristics instead of pruning. Porteous, Long and Fox
(2004) do so for “almost-symmetries” in the FF planner.

Our own work can be seen as a continuation of this line
of research, and its extension to the more ubiquitous state-
based planners. Among our contributions, we present a
framework for the understanding of symmetry exploitation
from the state-based point of view.

The essence of our approach to symmetry exploitation is
made up of two main steps. First, we explain how knowl-
edge of symmetries in the search space can be useful to
prune some of the search done by state-based algorithms
such as A∗; for this, we employ techniques similar to the
canonicalization used by Emerson (1996) as well as pruning
of shallower symmetries similar in spirit to Rintanen (2003).
We then explain how to deduce the existence of relevant
symmetries in the search space from the smaller problem
description (in a way similar to Cohenet. al. (2006) which
have done so for CSPs). Since our approach works at the
core of the search algorithm by pruning branches of the
search, it is completely independent of any heuristic that
may be applied to guide that search, and can assist whenever
the planning problem contains some amount of symmetries.

1.1 Example
We begin by presenting an example that has appeared in the
International Planning Competition (IPC), and has been ex-
amined in the context of symmetries by Fox and Long: the
gripper domain. The gripper domain consists of two rooms,
n numbered balls, and a robot with two arms, or grippers.



The robot can pick up a single ball in each of its grippers,
move between rooms, and put balls down. A problem in-
stance is usually set up in the following manner: all balls
and the robot begin in one room, and the goal is to move the
balls to the other room.

The problem seems trivial to solve (at least for humans),
but is surprisingly difficult for planners. The difficulty stems
from the fact that the balls in the problem are effectively
interchangeable, but are not considered as such by conven-
tional planning algorithms. The balls may be picked up in
any ofn! possible orders, each of which will lead to a dif-
ferent plan, and planners may potentially try all such or-
ders. The reason for this was well-explained by Helmert
and Röger (2008), where it is shown that any A∗ search with
an imperfect heuristic is bound to explore states on multiple
shortest paths to the goal. Our objective is to identify dur-
ing search that some states (and therefore the plans going
through them) are symmetric to one another, and can thus
be pruned; e.g., the state in which the robot holds one ball in
its right gripper (and the left is free) is symmetric to the state
in which the ball is held in the left gripper (with the right one
free). Only one of the two states needs to be explored in or-
der to find an optimal plan. This means that on domains in
which symmetries occur, the heuristic will no longer have to
be perfect in order to avoid opening most of the states.

2 Preliminaries
We consider planning in the SAS+ formalism (Bäckström
and Nebel 1995). Tasks that are represented in STRIPS
or PDDL can be automatically converted to SAS+(Helmert
2006), which is sufficiently general, and is used in Fast-
Downward—the planner used in our implementation. The
algorithms we present do not take into account action costs
and conditional operators, but these, and other additional
structures in the planning language, can be accounted for
with only minor modifications.

2.1 Definitions for Planning Problems
Definition 1 A planning task is a tuple(V,O, s0, S⋆):

• V = {v1, ..., vn} is a finite set of state variables, each
with a finite domainDv.1 A fact is a pair〈v, d〉 where
v ∈ V andd ∈ Dv. A partial variable assignment is a set
of facts, each with a different variable. A state is a partial
variable assignment defined over all variablesV .

• O is a set of operatorso specified via〈pre(o), eff (o)〉,
both being partial variable assignments toV .

• s0 is the initial state.
• S⋆ is a partial variable assignment which is the goal.2

An operatoro ∈ O is applicable in a states iff pre(o) ⊆ s.

The states of a problem naturally define a search space in
the form of a state transition graph—a directed multigraph
(S,E), whereS is the set of all states, andE, the set of

1To simplify definitions, we assume unique names for the val-
ues, so given a value it is known to which variable it corresponds.

2We will slightly abuse notation and useS⋆ to denote the set of
goal states.

edges, contains a directed edge from states to states′ ex-
actly for every operator that is enabled ats and leads tos′.3

An instance of a planning problem is then fully specified
by designating an initial states0 and goalsS⋆ with the ob-
jective of finding the shortest possible path (i.e., a plan) be-
tweens0 and somes⋆ ∈ S⋆.4

2.2 Graph Automorphisms, Permutation Groups

The symmetries in the problem are manifested as automor-
phisms in the state transition graph. We briefly present some
relevant definitions from Group Theory.

An automorphism of a graph(S,E) is a permutation
σ : S → S of the vertices of the graph that maintains the
structure; i.e., for every two verticess1, s2 ∈ S, we have
that (s1, s2) ∈ E iff (σ(s1), σ(s2)) ∈ E. The automor-
phisms of(S,E), with the composition action, constitute a
group denotedAut(S,E). Unless otherwise specified, we
will denote byG some subgroup ofAut(S,E) (and refrain
from using it to denote graphs).

Definition 2 Σ = {σ1, . . . , σk} is said togeneratea finite
groupG, if G is exactly all the permutations that are ob-
tained by repeatedly composing elements ofΣ.

Finding a generating set for the automorphisms of a graph
is harder than solving the graph isomorphism problem (for
which no polynomial-time algorithm is currently known).
See the paper by Luks (1993) for an overview of complex-
ity results relating to permutation groups. Generating sets
are usually found using brute force backtracking search with
some specialized pruning techniques that allow the set to be
found surprisingly quickly in practice.

Definition 3 The orbit of a vertexs with respect to some
subgroupG is denoted byG(s) and is simply the set
of vertices to which elements inG map s. G(s) =
{σ(s) | σ ∈ G}.

Given a generating set forG, the orbit of vertices can be
computed in polynomial time. We will be especially inter-
ested in subgroups ofAut(S,E) that fix a certain vertex or
a set of vertices. These are defined below:

Definition 4 Thepoint-stabilizerof a vertexs with respect
to G, denotedGs is a subgroup ofG that contains all the
permutations that fixs. Gs = {σ | σ ∈ G, σ(s) = s}.

Definition 5 The set-stabilizer of a setX ⊂ S with respect
to G is the subgroup ofG that maps elements ofX only to
X . GX = {σ ∈ G | ∀x ∈ X σ(x) ∈ X}.

Finding generators for the stabilizer of a single vertex can
be done in polynomial time. In contrast to that, finding gen-
erators for the set-stabilizer group is a more difficult prob-
lem, that is known to be harder than graph isomorphism.

3Equivalent operators may exist, and so there can be more than
one edge between two states.

4We often refer to states in the planning problem as vertices in
the transition graph, and vice versa.



3 Symmetries in the Search Space
Our goal in this section is to show how the symmetries in
the transition graph can be used to prune the search. The
first observation we make is that stabilizing vertices can help
when automorphisms are applied to paths.

Observation 1 Let (S,E) be a graph with a groupG of
automorphisms, and let(s0, s1, . . . , s⋆) be a sequence of
vertices that forms a path froms0 to s⋆. If we simply ap-
ply someσ ∈ G to the path, we will have another path of
equal length: (σ(s0), σ(s1), . . . , σ(s⋆)). This path, how-
ever, may not begin ats0, and thus may be of little value.
Instead, we may choose to fix a given vertexsi along the
path via the point-stabilizer subgroupGsi , and apply the
transformation only to some part of the path. From the ap-
plication of anyσ ∈ Gsi to the suffixsi, . . . , s⋆, we get a
path (s0, s1, . . . , si−1, σ(si), σ(si+1), . . . , σ(s⋆)) which is
connected becausesi = σ(si). This path does begin ats0.

This rather basic observation will form the basis of our mod-
ification of state-based planning algorithms, and specifically
ones that are based on A∗. To use it, we will need to be
able to perform three basic tasks: to findG ⊂ Aut(S,E), to
compute the stabilizerGs of a states, and to determine for
two statess1, s2 if s1 ∈ G(s2).

We discuss how to perform these three tasks in the next
section, and for now present how they may be used in a plan-
ning problem. As we are constrained for space, we assume
the reader is intimate with the workings of the A∗ algorithm,
and do not specify it. In addition, we do not present full
proofs of the correctness of our algorithms, which follow
along similar lines to the proofs of A∗’s correctness.

3.1 Searching in Orbit Space
Observation 1 suggests that in order to ensure that symmet-
ric paths always connect tos0, we may stabilize any vertex
along a path that starts there. One vertex will surely be along
any path froms0, and that iss0 itself. A simple approach
would then be to restrict ourselves to the groupGs0 .

Our goal is to find a shortest path froms0 to any of
the nodes inGs0(S⋆). Once such a path is found to some
nodeσ(s⋆), we can translate it to a path from start to goal
by simply applyingσ−1 on the entire path. To gain the
most benefit from our search procedure, we do not con-
duct the procedure on the original search space, but rather
consider orbits of the search space as nodes in our search,
in a manner similar to that of Emerson and Sistla (1996).
For this purpose we define a graph with vertex setSorb,
the set of orbits of vertices in the transition graph with re-
spect to the groupGs0 . The edge set that we will use is
Eorb which will contain an edge from one orbit to another
iff there exists an edge between nodes from these orbits
in the original graph.Sorb = {Gs0 (s)|s ∈ S} ; Eorb =
{(o1, o2) ∈ Sorb × Sorb |s1 ∈ o1, s2 ∈ o2, (s1, s2) ∈ E}

We can conduct a search in(Sorb, Eorb) and the resulting
path will translate to a plan in the original transition graph.
While we wish to run a search on the graph of orbits, we
really only know how to search in the original search space.
Our heuristic function may also only apply to states and not
to orbits. Therefore, the practical search algorithm simulates

a search on the orbits through a search in the original space,
by using a single state from each orbit as its representative:

1. Before the search, find generators for the groupGs0 .
2. Whenever generating a nodes2, search for a previously

generated nodes1 such thats2 ∈ Gs0(s1). If such a node
was found, treats2 exactly as if it wass1, otherwise,s2
represents a newly found orbit.

3. Stop the search when expanding a node fromGs0 (s⋆).

Alas, the stopping condition of the algorithm we present is
not guaranteed to work with all heuristic functions. In fact,
since we stop the search at some node fromGs0(s⋆) that
is not necessarily a goal state, our algorithm must assure
us that when this node is expanded, its f-value is minimal.
For general admissible heuristics it is not guaranteed that
h(σ(s⋆)) = 0, but an admissible heuristic that will give all
nodes inGs0(s⋆) the same h-value of 0, will work.

Notice that the above algorithm will never expand the
children of a node that is not from a new orbit. It will be
matched to a previously generated node, and the A∗ algo-
rithm will treat it as that node (it may update its f-value if it
has a lower one than the previously-seen representative for
the orbit, but it does not need to be expanded).

While many heuristics that will give all goal-symmetric
states the same value do exist, we would like an algorithm
that would function with admissible heuristics that are not
necessarily symmetric. In addition, as we will later see, the
need to check the halting condition of the algorithm for each
node (trying to see if it is in the orbit of the goal) requires a
great deal of computation. Our next modification (which is
also the one used in our experiments) will allow us to sim-
plify this check, and to use heuristics that are just admissible,
by using a somewhat restricted set of symmetries.

3.2 Stabilizing the Goal
Our previous algorithm was not guaranteed to reach a goal
state, which caused it to require complicated checks for
the terminating condition and to use only goal-symmetric
heuristics. To solve this issue, we work with the symmetry
groupGs0,S⋆

that stabilizes both the start, and the partial
assignmentS⋆. The modified algorithm is as follows:

1. Before the search, find generators for the groupGs0,S⋆
.

2. Whenever generating a states2, search for a previously
generated states1 such thats2 ∈ Gs0,S⋆

(s1). If such a
state was found, treats2 exactly as if it wass1, otherwise,
s2 represents a newly found orbit.

3. Stop the search when a goal state is expanded.

This algorithm is also effectively a search in the orbit-space
of a smaller group, but the orbit of goal states contains only
goal states, and so our halting condition is simplified. An
additional benefit is that we can relax the search for match-
ing states in step 2. If we fail to match a state to another one
in its orbit, it will simply be added as a node in the search
but will not change the minimal length of the path we end
up finding. We can therefore do this matching in a heuris-
tic manner (but we must make sure that no false positive
matches are made). Our previous approach required exact
matching in order to identify the goal state correctly.



3.3 Shallow Pruning of Symmetric States

Both of the previous algorithms have stabilized the start
state and have thus limited the symmetries that were used.
To show that other approaches may be possible, we will
briefly exhibit another modification that can be implemented
alone or combined with search in orbit-space that will work
through somewhat different symmetry groups.

When expanding a certain states during search in highly
symmetric problems, we often find that we are generating
a large number of child states, many of which are symmet-
ric to one another. We then waste effort matching each of
them to the orbits of previously generated states, and prun-
ing them then. It would be ideal if we could use a shallow
pruning technique to avoid generating some of these imme-
diate children.

1. For each states that is being expanded, compute the point-
wise stabilizer of the goal ands itself: Gs,S⋆

.
2. Choose one operator from each orbit inGs,S⋆

to apply in
s (given that it is enabled), and avoid applying the others.5

3. Stop the search once a goal state has been expanded.

The intuition behind the modification is as follows. Ifs
is not itself on the shortest path to the goal, then failing to
generate some of its children will not affect the path found
in the search (if one of its children is on the shortest path,
it will be a child of another node as well). If it is on the
shortest path, then two symmetric actions will only lead to
symmetric states (with respect toGs,S⋆

) and a path through
one such state to the goal can be turned into a path through
the other, as is demonstrated in Observation 1.

This form of symmetry pruning is somewhat costly as it
requires many computations of the state stabilizer. It is very
similar in spirit to the approach of Fox and Long (2002)
which they term dynamic symmetries. In fact, from the
state-based perspective, it is not the symmetry group that
changes, but rather the subgroup of it that we exploit at any
given point. The shallow pruning algorithm fails to remove
many symmetric states from the graph when applied alone
(symmetries between states that do not have a common par-
ent will not be detected), but it can be combined with our
second version of search in orbit space.

4 Symmetries in the Problem Description
Above, we have shown how to exploit symmetries to speed
up search. We now explain how to detect such symmetries,
and how to perform the basic computations we needed.

Our approach to symmetry detection is similar to the ones
used in previous research. We detect symmetries in the de-
scription of the problem and infer through these about sym-
metries in the transition space, i.e., we identify places where
variables, values and operators can be renamed (permuted
somehow) so as to leave us with exactly the same prob-
lem as before. These syntactic symmetries in the problem
description, which is much smaller than the search space,

5The orbits of an edge in the transition graph is the set of edges
to which it is mapped by the group action.

val3val2val1

var1

pre1 post1 state1

val5val4

var2

val8val7val6

var3

pre2 post2

Stabilized State

Variables

Values

Operators

Figure 1: A problem description graph (PDG) with a stabi-
lized state.

imply the existence of symmetries in the transition graph.6

To find syntactic symmetries, we construct a graph that en-
codes the problem’s structure, and use conventional group-
theoretic algorithms to find generators for its automorphism
group. While the algorithms to find the generators for the au-
tomorphism group run in worst-case exponential time, they
are quite manageable for graphs of hundreds of thousands of
vertices. These suffice to describe typical planning problems
that challenge current planners.

Formally, we define an undirected graph for a plan-
ning problem, that we call theProblem Description Graph
(PDG). The PDG has four types of vertices: there is a ver-
tex for every variable, every value, and two vertices for each
operator—one that represents the preconditions and one that
represents the effects. The vertices are connected by edges
as follows. We connect every variable vertex to the values
that belong to it, every precondition and effect belonging to
the same operator, every precondition vertex to the values
in its precondition list, and finally, each effect vertex to the
values in its effects list. Figure 1 illustrates such a graph.

We are specifically interested in the groupGPDG of au-
tomorphisms of the PDG that are restricted to map vertices
of each type (variables, values, preconditions, and effects)
only to vertices of the same type. Several tools solve this
problem of colored-graph automorphism quickly. Our own
implementation uses Bliss (Junttila and Kaski 2007).

Observation 2 Every permutationπ ∈ GPDG can be in-
terpreted as a permutation operator on states. We denote
this operation bŷπ : S → S. It is defined in the following
manner:π̂(s) = {〈π(v), π(d)〉 | 〈v, d〉 ∈ s}

That is, if the valued is assigned to variablev in states
then the valueπ(d) holds in variableπ(v) in stateπ̂(s). The
edges between variables and their values in the PDG assure
us thatπ̂(s) will be a legal state (all variables will be as-
signed exactly one value), asπ is thus restricted to preserve
the link between a variable and its values.

Proposition 1 The operator̂π (as defined above in Obser-
vation 2 for any correspondingπ ∈ GPDG ) is a proper per-
mutation on states. Furthermore,π̂ ∈ Aut(S,E).

6Fox and Long (1999) advocate using “object symmetries”
which use more restricted subgroups than those we detect, but may
be found faster in practice. This alternative approach is compatible
with our methods of exploitation.



The proposition holds because the edges in the PDG en-
code the entire structure of the planning problem and any
(colored) automorphism of the PDG is equivalent to renam-
ing the operators, variables and values in a way that pre-
serves the semantics. A similar observation about the re-
lation between syntactic symmetry and semantic symmetry
has been made in the context of CSPs (Cohen et al. 2006).
We do not provide the proof due to lack of space.

4.1 Stabilizing a Given State
We now show how to look for subgroups that stabilize a
given state, using the PDG representation. Given a states,
we are interested in allπ ∈ GPDG for which π̂(s) = s.

Observation 3 Using the definition of̂π’s operation on
states, we can see that in order for a state to re-
main unchanged under̂π, it must be that π maps
all values that hold in s onto themselves: Gs =
{π̂| 〈v, d〉 ∈ s → 〈π(d), π(v)〉 ∈ s}. This means that in
order to findGs we just need to compute the set stabilizer
(withinGPDG ) of all values that hold ins.7

We ensure that assigned values are mapped only into each
other by adding a vertex to the PDG, connecting it only to as-
signed values (as depicted in Figure 1), and then computing
generators for the automorphisms of this modified graph.

4.2 Locating States from the Same Orbit
Given a groupG, and a states, we wish to know if our search
has already encountered a state inG(s). One naive (and
time-consuming) approach would be to iterate over all pre-
viously encountered states, and to attempt to computeσ ∈ G
that will perform the match. Each such comparison is in it-
self a computational problem (that is harder than Graph-Iso).
We shall instead use a method that is commonly employed
in computational group theory: the canonical form. We map
each states into another stateC(s) ∈ G(S) that acts as a
representative for the orbit.CG() is a mapping such that:
CG(s) = CG(s

′) iff ∃σ ∈ G : s = σ(s′). One possible
way to pick a representative state is to look for the one that
has a lexicographically minimal representation. Using the
canonical form, we are able to rapidly check if a new state
is symmetric to one that has been previously encountered
by keeping the canonical form of all states we encounter in
some form of a hash-set (or any other data structure that lets
us test membership in O(1) time). Since A∗ keeps such data
sets of generated states anyway, we simply use the canonical
form as the key instead of the state itself. Unfortunately, is
is NP-hard to find the lex-minimal state (Luks 1993).

Approximate canonical forms If we wish to speed up the
canonical-form computation for states, we can use a heuris-
tic approach. Instead of finding the lexicographically small-
est state inG(s), we greedily search for one that is relatively
small (by applying various permutations) and keep the best
state we encounter. We may often find that instead of map-
ping all members ofG(s) to a single state, we map them to
several ones that are local minima in our greedy search. In

7Partial assignments are stabilized in the same manner.

this case we do not reduce the search space as effectively,
but we do it much faster.

5 Experimental Evaluation
Symmetry exploitation has the potential to slow search if
the savings it provides in the number of explored states are
negligible in comparison to the additional running time it
requires per state. We therefore conducted our experiments
with the aim of checking if the pruning algorithm fulfills
its purpose, i.e., if it makes the search faster on problems
that contain enough symmetries, while not severely hurting
performance in problems that do not have any.

Since shallow pruning requires calculating automor-
phisms that stabilize each state, it is too slow to use if the
canonical state evaluations that it saves are very efficient.
Our search in orbit space that was based on greedy canoni-
calization attempts proved so fast that we did not gain from
additional shallow pruning (but slower approaches, e.g., ex-
act matching, benefit a great deal).

We implemented our algorithm on the Fast Downward
system (Helmert 2006), and compared between the running
times of the planner with and without our modifications.
Our tests were conducted using various heuristics and were
done on domains from recent planning competitions (IPCs).
For symmetry detection, we used Bliss (Junttila and Kaski
2007), a tool that finds generators for automorphism groups.
All experiments were conducted on Linux computers with
3.06GHz Intel Xeon CPUs, using 30-minute timeouts. For
all experiments we set a 2GB memory limit.

We used three heuristics for testing: first, LM-
Cut (Helmert and Domshlak 2009), which is one of the best
heuristic function known today; second, Merge-and-Shrink
(Helmert, Haslum, and Hoffmann 2007), which is less infor-
mative, but has a different behavior as it spends more time
in pre-processing and less during the heuristic calculation
for each state; finally, we also tested usingh0 (blind search).

Table 1 shows the number of tasks solved by each heuris-
tic, with and without the symmetry-pruning algorithm.8 The
biggest advantage was, as expected, in the gripper domain,
where all heuristics failed to solve more than 7 tasks without
our modification, and all of them solved all 20 tasks with it.
Even though other domains contained relatively few symme-
tries, using symmetries for pruning still improved the results
in some of those domains.

Table 2 shows the number of node expansions and search
time for each heuristic in selected tasks, both with and with-
out symmetry detection. Empty cells correspond to runs that
exceeded the time and memory constraints. We chose to dis-
play a sample of instances from the gripper domain (where
symmetries were abundant). Other domains had fewer sym-
metries, and we picked the mprime domain, where we did
not solve additional instances, but did improve the running
time of some tasks, as a typical example (we display the

8Because of space limitations, we did not present these num-
bers for domains in which the symmetry detection algorithm did
not change the number of tasks solved, which are: airport, blocks,
depot, drivelog, freecell, grid, logistics00, mystery, mprime, open-
stacks, pathway-noneg, rover and trucks.



h0 hm&s hLM−cut

domain reg sym reg sym reg sym

gripper(20) 7 20 7 20 7 20
logistics98(35) 2 2 4 5 6 6
miconic-STRIPS(150) 50 50 53 56 141 141
pipesworld-notankage(50) 14 16 21 22 17 18

pipesworld-tankage(50) 9 13 14 16 10 13

psr-small(50) 48 49 50 50 49 49
satellite(36) 4 5 6 6 7 9
tpp(30) 5 6 6 6 6 7
zenotravel(20) 7 8 11 11 12 13
Total 273 296 316 336 434 455

Table 1: The number of solved tasks per heuristic

h0 hm&s hLM−cut

expanded time(sec) expanded time(sec) expanded time(sec)
inst reg sym reg sym reg sym reg sym reg sym reg sym

gripper
7 10.1M 1.72K 90.0 0.16 10.1M 937 126.5 2.83 10.1M 561 1320 0.14

8 — 2.01K — 0.25 — 1.35K — 3.62 — 740 — 0.24

20 — 60.5K — 66.32 — 16.0K — 41.07 — 3.14K — 10.5

mprime
5 — — — — 1.70M 565K 161.2147.6 46.2K 22.6K 525 224.1

12 108K 77K 5.92 6.03 35.0K 29.8K 8.78 9.18 122 87 1.57 0.97

19 — — — — 150K 150K 208.3212.4 — — — —

21 1.5M 438K 186 360 — — — — 900 504 229 97

logistics-9-0-extra-trucks
2 — — — — 1.07M 325K 43.3 22.3 74.5K 22.9K 130 30.7

3 — — — — 4.12M 657K 188 57.6 183K 30.7K 425 54.2

4 — — — — — — — — 286K 31.4K 946 71.3

Table 2: Expanded nodes and search time in select instances

four solved instances with the maximal number of expanded
nodes). While some cases show improvements in both node
expansions and running time (instances with enough sym-
metries), others exhibit improvements only in node expan-
sion or none at all (few or no symmetries). Still, the loss
in running time is never severe. The improvement in the
number of node expansions did not lead to the same effect
in search time in all heuristics.hm&s andh0 spend very
little time per state evaluation (and so symmetry pruning is
less effective), whilehLM−cut, which is currently the best
heuristic known, takes more time to calculate per state.

As the IPC problems are often constructed with few sym-
metries (perhaps in an attempt to focus on other difficulties),
we sought to demonstrate that symmetriescan occur natu-
rally. The third set of instances we exhibit in Table 2 was
created by taking a problem from the logistics domain and
adding more trucks at the same locations as those of existing
trucks.9 The instance numbers described match the number
of trucks that were added to the instance, and our algorithm
does exploit emerging symmetries.

6 Conclusions
We presented a set of algorithms that we applied to state-
based planners in order to help them deal with highly sym-
metric problems. Implementing our techniques shows that
significant improvements in symmetric instances can be
achieved without serious harm to performance elsewhere.

9The domain deals with delivery of packages using trucks.

Future work includes improving the approximation of the
canonical state, and finding fast variants of shallow pruning
that will make it more useful in practice. Also, we have
not fully utilized all symmetries in the transition graph, and
believe that other symmetry exploitation algorithms can be
developed within the general framework we have outlined.

Acknowledgments This work was partially supported
by Israel Science Foundation grant #898/05, and Israel Min-
istry of Science and Technology grant #3-6797.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning.Computational Intelligence11:625–656.
Cohen, D.; Jeavons, P.; Jefferson, C.; Petrie, K.; and Smith,
B. 2006. Symmetry definitions for constraint satisfaction
problems.Constraints11:115–137.
Emerson, E. A., and Sistla, A. P. 1996. Symmetry and model
checking. Formal Methods in System Design9(1/2):105–
131.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. InProceedings of
IJCAI’99, 956–961.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. InProceedings of AIPS’02, 83–91.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of ICAPS’09, 162–169.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? InProceedings of AAAI’08, 944–949. AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of ICAPS’07, 176–183.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research26:191–246.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. InPro-
ceedings of ALENEX’07, 135–149. SIAM.
Luks, E. M. 1993. Permutation groups and polynomial-time
computation.Groups and Computation, DIMACS series in
Discrete Math and Theoretical Comp. Sci.11:139–175.
Miguel, I. 2001. Symmetry-breaking in planning:
Schematic constraints. InProceedings of the CP’01 Work-
shop on Symmetry in Constraints, 17–24.
Porteous, J.; Long, D.; and Fox, M. 2004. The identification
and exploitation of almost symmetry in planning problems.
In Brown, K., ed.,Proceedings of the UK PlanSIG’04.
Puget, J.-F. 1993. On the satisfiability of symmetrical con-
strained satisfaction problems. InMethodologies for Intelli-
gent Systems, volume 689 ofLNCS. Springer. 350–361.
Rintanen, J. 2003. Symmetry reduction for SAT represen-
tations of transition systems. InProceedings of ICAPS’03,
32–41.
Walsh, T. 2007. Breaking value symmetry. InPrinciples
and Practice of Constraint Programming (CP’07), volume
4741 ofLNCS. Springer Berlin / Heidelberg. 880–887.


