
Using Swamps to Improve Optimal Pathfinding

Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Jerusalem, Israel

{nirp, avivz, jeff}@cs.huji.ac.il

Abstract

In a variety of domains, such as computer games and robotics,
many shortest paths have to be found quickly in real time.
We address the problem of quickly finding shortest paths in
large known graphs. We propose a method that relies on
identifying areas that tend to be searched needlessly (areas
we call swamp-regions), and exploits this knowledge to im-
prove search. The method requires storing only a few bits
in memory for each node of the graph, and reduces search
cost drastically, while still finding optimal paths. Our method
is independent of the heuristics used in the search, and of
the search algorithm. We present experimental results that
support our claims, and provide an anytime algorithm for the
pre-processing stage that identifies swamp-regions.

Introduction
Many real-time applications search for shortest paths in
known graphs. Examples include strategy games where
multiple units traverse a large board, as well as robotics ap-
plications where robots are required to navigate, planning
their path through some environment. The frequency that
the system has to search for paths can strain its resources
and damage performance.

Heuristics are commonly used to improve the running
time of search over graphs. While heuristic algorithms, such
as A*, usually succeed in improving search cost when com-
pared to uninformed search algorithms, there is still much
room for improvement. In this paper, we introduce a method
that prunes the search graph by removing areas where search
is usually wasted; this pruning thus lowers the overall search
cost. Our method guarantees that the paths that are found are
optimal, even after the graph has been pruned.

First, let us motivate our discussion regarding “difficult
search areas”. Consider the map given in Figure 1; in this
example, algorithms such as A* (Hart, Nilsson, & Raphael
July 1968) (with a good heuristic) can search very efficiently
in some areas of the map, while being very inefficient in
other areas. Figure 1 shows the nodes that are expanded
during a search from nodeS to nodeT , as carried out by
the A* algorithm, using a Manhattan distance heuristic on
a four-neighbor, two-dimensional grid. Note that while the

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimal path that is eventually found is quite short, the num-
ber of expanded nodes is significantly larger. Many nodes
are expanded inside the cup-shaped region, while the final
path does not pass through any node in that region. In fact,
any shortest path that does not start inside the cup or end in
it, will never pass through any node within it.

Figure 1: Nodes expanded during an A* search from node
S to nodeT . Obstacles are marked in black, the expanded
nodes are marked in gray, and thef value used during the
search is noted for each one. The path that is eventually
found is marked in darker gray.

Our approach will be to automatically identify areas such
as the cup, which we will callswamp-regions, and store
information about them in the graph, without wasting too
much memory. Then, while searching for shortest paths be-
tween two nodes of the graph, we can block the search as
it tries to unnecessarily enter those regions. We will present
anytime algorithms for the pre-processing stage in which we
locate swamp-regions in a grid; i.e., the algorithms give bet-
ter results the longer they run. The detection process can
thus be run in the background, using spare processing time
to improve the results of future searches in the graph (free-
ing more processing time in the future, when it may be more
scarce). Our algorithms are also applicable in cases where
the grid changes slowly, as we are able to quickly update the
swamp-regions to reflect minor changes in the environment.

We empirically evaluated our method on 2D four-
neighbor grids with randomly placed obstacles, where



search is performed using the A* algorithm with an admis-
sible consistent heuristic. The results demonstrate the use-
fulness of our approach and provide information regarding
the efficiency of our method.

The rest of the paper is organized as follows. We begin
by briefly reviewing related work, and then turn to formally
defining swamps on general graphs, and proving some of
their properties. We then explain how to exploit informa-
tion about swamp-regions during the search to obtain short-
est paths while expanding fewer nodes. Next, we present
an algorithm to detect swamps on a 2D four-neighbor grid,
and prove its correctness. We then present experimental re-
sults that support the claim that using our algorithms on four-
neighbor grids significantly reduces the search cost. We con-
clude by discussing future work.

Related Work
Much research has been carried out in the field of artificial
intelligence to improve the speed of search operations on
graphs under various circumstances, while not consuming a
large amount of memory. A* (Hart, Nilsson, & Raphael July
1968) and IDA* (Korf 1985) are widely used, where A* is
usually faster but can consume more memory than IDA*.

Several methods, such as (Sturtevant 2007), (Botea,
Müller, & Schaeffer 2004) and (Sturtevant & Buro 2005),
use graph abstractions to increase the speed of search. Those
methods pre-process a grid and build an abstract representa-
tion of the search graph, sometimes at multiple levels. The
search is then done in the abstract graph, which is smaller,
and is refined into the original graph. These methods have
been shown to work well on large graphs, though they do
not guarantee shortest paths, and sometimes require a path-
smoothing phase after the path refinement in order to get
good results.

Another approach is to use previous searches to improve
new search performance. LPRA* (Korf 1990), (Koenig
2004) and RTAA (Koenig & Likhachev 2006) search with
limited look-ahead, and update the heuristic of the nodes vis-
ited. These approaches solve the first move delay problem,
but pay a price since the paths they find are not guaranteed
to be shortest paths, and convergence time may be long.

LPA* (Koenig, Likhachev, & Furcy 2004) and D*
lite (Koenig & Likhachev 2002) reuse previous search in-
formation when the environment is dynamic; thus the path
found in previous searches might no longer be passable, or
might no longer be the optimal path, due to a change in the
map. Those algorithms use the previous search information
to recalculate the path, either from the original start point
(LPA*) or from the current position of the agent (D* lite),
and usually perform better than beginning a new A* search.

Exploiting swamps implies searching in a smaller set
of available nodes, and can therefore be of benefit to all
the algorithms mentioned above and many others; it does
not compete with them. Our algorithm just adds a pre-
processing stage that should be executed once per graph.

Swamps
We now define swamp regions. Intuitively, a swamp is an
area in the graph such that any shortest path that passes

through it either starts or ends inside that area, or has an
alternative shortest path that does not pass through.1 We de-
fine this notion more formally below.

Definition 1. A swamp-setS in an undirected graphG =
(V,E) is a group of nodesS ⊆ V such that any two nodes
v1, v2 which are not part ofS have a shortest path that does
not pass throughS:
For eachv1, v2 /∈ S, there exists a shortest pathP1,2 that
connectsv1 andv2 such thatP1,2 ∩ S = ∅.

Note that a swamp-set is not necessarily a connected com-
ponent in the graph. We shall use the termswamp-regionto
denote a connected component that is a swamp-set.

Definition 2. A swamp-regionR is a set of connected nodes
that is a swamp-set.

The next example illustrates the definition of a swamp.

Example 1. Figure 2 demonstrates a swamp-region. Let
R = {s1, s2, s3, s4}. For any search from nodeS ∈ V \ R
to a nodeT ∈ V \ R there exists a shortest path that does
not pass through any of the nodes in{s1, . . . , s4}.

Figure 2: An example of a swamp-region. Nodes filled in
black are obstacles. Nodes{s1, s2, s3, s4} form a swamp-
region.

We now define theexternal boundaryof a swamp-set as
follows:

Definition 3. The external boundary of a swamp-setS,
B(S), is the collection of nodes that are connected directly
to nodes of the swamp-set but are not part of it.

Additional Properties of Swamp-Sets
We shall now demonstrate a few properties of swamps that
will later be used in our algorithm’s detection and exploita-
tion of swamps.

Our first lemma shows us that it is enough to check only
paths between points on the boundary of a region in order to
ensure that it is a swamp-set. This will later give us a good
procedure for checking if a given set of nodes is a swamp-
set, and for trimming down a region to a swamp-region.

Lemma 1. LetS be a set of nodes inV . If for any two nodes
on the external boundary ofS, v1, v2 ∈ B(S), there exists
a shortest path betweenv1, v2 that does not pass throughS,
thenS is a swamp-set.

1A slightly more restrictive alternative is to define a swamp-set
as a group of nodes that isneverused in any shortest path. This def-
inition has nicer properties in some sense, but yields significantly
smaller swamp-sets and is thus less useful in practice.



Proof. Assume that the claim is not correct; then there exist
two nodes,v1 andv2 that are not inS, such that there is at
least one shortest path betweenv1 andv2 that passed through
S, and no shortest path betweenv1 and v2 does not pass
throughS. Sincev1 andv2 are not inS any path between
them that passes throughS has to enter and leaveS. This
means that it passed through at least two points inB(S).
We will mark the first such node asvB1 and the last asvB2.
According to the conditions of the lemma, there is a shortest
path betweenvB1 andvB2 that does not pass through the
group, so we can replace the part betweenvB1 andvB2 with
this path, thus getting a shorter path betweenv1 andv2 that
does not pass throughS—in contradiction to the claim.

Our second lemma demonstrates that if a swamp-set is
composed of several isolated components, then each one
of them is in fact a swamp-region. We will therefore later
be able to remove isolated components of a swamp without
damaging the properties of the rest of the swamp-set.

Lemma 2. Any connected componentR that is contained
in a swamp-setS, and is isolated from the rest of the swamp
(i.e.,B(R) ∩ S = ∅) is also a swamp-region.

Proof. According to Lemma 1, it is enough to show that any
two points on the boundary ofR have a connecting shortest
path that does not pass throughR. We know this is true, be-
cause by definitionB(R) consists only of obstacles or nodes
that do not belong toS. Therefore, becauseS is a swamp-
set, we know that at least one shortest path between these
points passes outside ofS and therefore also outside ofR,
which is a subset of the nodes of the swamp-setS.

In the previous lemma we have shown that every isolated
component can be broken down to swamp-regions. In fact,
it is sometimes possible to further decompose each isolated
component to swamp-regions. Later in the paper we will
discuss the problem of detecting swamp-sets in the graph,
and especially those that we can partition to many swamp-
regions. Here we shall show some properties of swamps that
demonstrate why this is not trivial.

Ideally it would be useful if swamps were monotonic in
some way, i.e., if each subset of nodes from a swamp-set
would compose a smaller swamp-set. This is not the case. In
fact, even the intersection of two known swamp-sets (which
is therefore contained in both) is not necessarily a swamp-
set.

Lemma 3. The intersection of two swamp-sets,S1 andS2,
is not necessarily a swamp-set.

Proof. We prove this by example. Consider the grid dis-
played in Figure 3(a). The group of nodes marked by1
forms a swamp-set, and so does the group marked by2.
However, their intersection (the node that is marked1, 2)
is not a swamp-set, as the only shortest path between the
corner nodes inside the cup-shape passes through it.

Another property that we would have found useful is to be
able to unify swamp-sets, and thus locate larger ones. Even
this procedure does not always succeed.

(a) An example that shows
that an intersection of
swamp-sets is not necessar-
ily a swamp-set.

(b) An example that
shows that the unifica-
tion of swamp-sets is not
necessarily a swamp-set.

Figure 3: Figures used in the proofs of Lemmas 3 and 4

Lemma 4. The unification of two swamp-sets,S1 andS2,
may not be a swamp-set.

Proof. Again, we prove by example. Consider the grid that
is displayed in Figure 3(b). The node marked by1 forms
a swamp-set if all other nodes are not swamps. The same
holds for node2. Their unification, however, is not a swamp-
set, as the shortest path fromS to T must pass either through
node1, or through node2.

Using Swamps to Decrease Search Costs
A naive approach to using a swamp-set to lower search costs
is to consider them as blocked whenever a search between
two nodes from outside the swamp-set is performed. The
search is then performed on an effectively smaller graph, and
could be expected to open fewer nodes. By the definition of
swamp-sets, the path that is found is still optimal. Using this
approach, more nodes are pruned from the graph when the
swamp is larger. However, in these cases fewer paths will
enjoy the benefits of pruning, since any arbitrary source and
target nodes are less likely to be outside a large swamp-set.

We will try to increase the benefits we get from swamps
by using a swamp-set that is completely partitioned into dif-
ferent swamp-regions. As we later show, we can construct
a swamp-set such that any subset of the swamp-regions that
make up this swamp-set will also constitute a swamp-set.
This way, when we search between two nodes in the graph,
we will consider any swamp-region that they do not be-
long to as blocked, and thus achieve significant savings on
searches between swamp nodes as well. More formally,
when searching for a path between nodesv1 andv2:

1. LetV be the set of vertices in the graph.

2. LetS be the full swamp-set that was found in the graph,
and is completely partitioned into swamp-regions such
that every subset of swamp-regions forms a swamp-set as
well.

3. LetR1 be the swamp-region thatv1 belongs to, or∅ if v1

does not belong to any swamp-region.

4. LetR2 be the swamp-region thatv2 belongs to, or∅ if v2

does not belong to any swamp-region.

5. Search only in the nodes of(V \ S) ∪R1 ∪R2.



Lemma 5. Searching under the above conditions maintains
optimality in the sense of shortest paths.

Proof. Let us examine a search between any two arbitrary
nodes,v1 and v2. We know from our assumption that
S \ (R1 ∪R2) is a swamp-set, and therefore any search that
ignores those nodes can still produce an optimal path.

Another potential use of swamps is shown in the exper-
imental section. We have experimentally found that when
searching for paths into a swamp-region the search cost is
often higher than when we search for the same path in re-
verse. We therefore always reverse the search when it origi-
nates outside a swamp and ends inside one.2 We believe the
explanation for this phenomenon is that swamps are usually
near large obstacles in the graph. When searching from a
node that is next to an obstacle to a node that is far away on
the opposite side of it, the search expands fewer nodes than
the reversed search.

In the next section, we will show how to find a swamp-set
that can be partitioned into swamp-regions in a manner that
will satisfy the requirements of Lemma 5.

Detecting Swamps in Grids
Our swamp detection algorithm is based on the fact that each
swamp-region contains at least one special node that we call
a seed. We detect those seeds and then try to expand them
into swamps.

Our definition of seeds is restricted to graphs that are rep-
resented by a 2D four-neighbor grid that may contain ob-
stacles in some of the grid coordinates. All of our meth-
ods work for any other graph as well, except that, in those
cases, more suspected nodes must be examined as possibil-
ities for swamps. For simplicity of presentation, we will
assume from now on that we are using only graphs that are
represented by 2D four-neighbor grids.

We will start by defining a seed. Then, we will prove that
each swamp-region contains at least one seed, and explain
how we utilize this to detect swamps that have the properties
needed for Lemma 5.

Definition 4. In a four-neighbor 2-dimensional grid, a seed
is a nodes ∈ V for which:

1. s is unblocked;
2. At least one of the nodes above or belows is blocked (or

does not exist);3

3. At least one of the nodes to the right or left ofs is blocked
(or does not exist).

Figure 4 displays a few seeds in a 2D grid.

Theorem 6. Every swamp-regionR contains at least one
seed.

The proof appears in the appendix.
We now present our algorithm for the detection of

swamps. Our main goal is to assign as much of the grid

2Note that search can also be reversed in directed graphs.
3If s is on the boundary of the graph then some of its neighbors

do not exist.

Figure 4: An example of seeds.s1, s2, ands3 are all seeds
in this example.

as possible to swamp-regions, so that every subset of the re-
gions composes a swamp-set. Better results will be obtained
when we manage to cover more of the grid, as long as each
region alone is not too large (so just considering the entire
grid as one large swamp will give us very poor results).

The main idea of the algorithm is as follows. First, we
detect all the seeds on the grid. Then, we iteratively extend
each seed to a swamp-region, given the other swamp-regions
that have already been found. We will now give more details
about the algorithm and prove its correctness.

The Swamp Detection Algorithm
The pseudo-code of the swamp detection algorithm is de-
scribed in Algorithm 1.4 First, we initialize our swamp-
regions to be the empty set and find all the seeds in the
graph. Then, we try to extend each seed: first we check
if it is a swamp-region by itself. If it is, we take the group
of the seed plus all the nodes that it can reach ink moves
(not including other swamp-regions), and try to trim it into
a swamp (as explained later). We keep increasingk until we
reach our size limit or until a few consecutive rounds of in-
creasingk do not change our swamp size (notice that if we
increase our radius byk and do not find a large swamp it
does not mean that increasing byk + 1 will not find a larger
swamp-region). We then return the largest swamp-region we
have found so far.

Notice, that a swamp-set can be efficiently represented in
memory. Each node in the graph needs just a few bits that
tell to which swamp-region it belongs. This is very low cost
(linear in the size of the graph), especially when considering
currently available alternatives such as caching paths in the
graph (where the number of paths is quadratic in its size, and
therefore a large cache is needed to get significant improve-
ments in performance).

We will now describe how we trim a group of nodes into
a swamp that contains the seed (Algorithm 2). First, we find

4For simplicity of presentation, we used some functions with-
out showing their implementation, if their implementation is trivial.
Those functions are:

getReachable(seed, radius): returns nodes that can be reached
from the seed in radius moves or fewer while countingswampst−1

as a swamp-set.
findPath(v1, v2, S): searches and returns the shortest path be-

tweenv1 andv2 under the assumption thatS is a swamp-set.
We also assume that MAX is some predefined parameter set by

the programmer.



Algorithm 1 The Swamp Detection Algorithm
procedure GROWSWAMPS(sizeLimit)

swamps0 = ∅
seeds = detectSeeds()
t = 1
for all s ∈seedsdo

region = extendSeed(s, sizeLimit)
if region not emptythen

swampst = swampst−1 ∪ {region}

t = t + 1

procedure EXTENDSEED(s, sizeLimit)
radius = 0;
size = 0;
while radius< MAX AND size < sizeLimitdo

cluster = getReachable(seed, radius)
current swamp = trimToSwamp(cluster, radius)
if size(current swamp)> sizethen

size = size(current swamp)
radius = radius + 1

return largest swamp found that had size less than
sizeLimit

the boundary of the group including points that are also in-
side other existing swamp-regions. Then, we go over all
pairs of points on the boundary, and search for the shortest
path between them, twice. First, we search while ignoring
the current group (but taking into account the other swamp-
regions). Then, we search while counting our current group
as a swamp-region as well. If the lengths of the paths dif-
fer, it means that the unification of this group with the rest
of the swamp-set will not yield a valid swamp-set. We try
to fix this by removing from the current group all nodes in
the shortest path that passed through it, and then repeat the
process.5 We are left with a group of nodes that is a valid ad-
dition to the swamp-set. However, the trimmed-down group
may no longer include the seed, or may no longer be a sin-
gle connected component. To make sure we return a swamp
that contains the seed, we only return remaining nodes in the
group that are in the component of the seed.

Theorem 7. After each staget of the algorithm,swampst

is a swamp-set, and every subset of the regions inswampst

is also a swamp-set.

Proof. The proof is by induction on the stagest of the al-
gorithm. It is true fort = 0 andt = 1 from the definition
of swamp-set and swamp-region. We will now prove that if
we follow the algorithm and every subset ofswampst−1 is
a swamp-set then every subset ofswampst is also a swamp-
set. Assume to the contrary that after staget there is a subset
of swampst that is not a swamp-set. This means that the
regionR added at timet breaks the swamp-set conditions,
when it is added to some subset ofswampst−1, which we

5There may be several shortest paths that go through the group
we are trimming to a swamp-region, and so there may be several
ways to trim it. Some trimmings will not succeed, or may lead to
the detection of different swamp-regions.

Algorithm 2 Trimming To Swamp Algorithm
procedure TRIMTOSWAMP(s, group)

B = getBoundary(group)
for all v1, v2 ∈ B do

P1 = findPath(v1, v2, swampst−1)
P2 = findPath(v1, v2, swampst)
if length(P2) > length(P1) then

for all vp2 ∈ P2 do
if vp2 ∈ group then

removevp2 from group
addvp2 to B(group)

will denote asregst−1 (we know this subset to be a swamp-
set from the induction assumption). Therefore there must
existv1, v2 such that searching fromv1 to v2 while assum-
ing regst−1 ∪ R is a swamp-set will not result in the short-
est path. We know thatv1, v2 /∈ R, otherwiseswampst−1

would not be a swamp-set. Since there was a shortest path
Pv1,v2

from v1 to v2 under the assumption thatregst−1 is
a swamp-set, and it is blocked under the assumption that
regst−1 ∪ {R} is a swamp-set, it means that the path must
have passed throughR. Sincev1 andv2 are not inR, the
path entered and leftR, so it passed through at least two
nodes inB(R). We will mark the first such node asvB1 and
the last asvB2. According to the algorithm we ran, there is
a shortest path betweenvB1 andvB2 that is found under the
assumption thatswampst is a swamp-setand therefore does
not pass through(regt−1 ∪ {R}) \ {reg(v1), reg(c2)},6 so
we can replace the part ofPv1,v2

betweenvB1 andvB2 with
this path, thus getting a shortest path betweenv1 andv2 that
can be found under the assumption thatregst−1 ∪ {R} is a
swamp-set, in contradiction to the claim.

Note that Theorem 7 implies that our algorithm for de-
tecting swamps is an anytime algorithm. At every stage, we
have a swamp-set that is viable and we can use even par-
tial results to improve path-finding. This suggests that in-
stead of pre-processing the map we can detect swamps in
between searches. Figure 5 illustrates the results of running
our swamp detection algorithm.

Experimental Results
We have run experiments on four-neighbor grids, where
each node can be either blocked or free. Nodes were blocked
at random with varying probabilities in each test, using dif-
ferent grid sizes. For each combination of grid size and
probability of blocking a node, we generated 100 grids for
the experiments. In each grid, nodes were independently
blocked with equal probability.

We then proceeded to run our swamp detection algorithm
on each generated grid as described in Algorithm 1. On the
resulting processed map and swamp-set that was found in
it, we ran 80,000 searches between pairs of points. Each
search was repeated twice: once using regular A*, and once

6We denote byreg(v) the swamp region that containsv, or∅ if
v is not included in any swamp-region.



(a) The grid without the
swamps. Obstacles are
marked as black.

(b) The grid with
swamps (marked in
gray). The number
indicates the swamp
group to which a node
belongs.

Figure 5: Example for the results of the swamp detection
algorithm on a 6x6 grid, with25 percent obstacles.

using the same implementation of A* but also using the ad-
ditional information on the swamp-set we detected in the
pre-processing stage.7

Our experiments demonstrated that using our detection
and exploitation algorithm results in a significant saving in
the search cost, in terms of expanded nodes. Figure 6 com-
pares the cost searching with and without swamps on differ-
ent grid sizes and with a different probability of generating
obstacles. The figure also shows the average path length
during searches. Note that the number of nodes expanded
in our approach is significantly lower than the number of
expanded nodes during a regular activation of A*. The sav-
ing becomes more and more pronounced in larger grid sizes,
where A* expands many more nodes than are strictly needed
for the path. The density of obstacles is also a factor in the
efficiency of the method. As the number of obstacles rises,
so does our algorithm’s savings.

Figure 7 shows the results of experiments that were run on
a 60x60 grid that had a 30% obstacle density. A path is con-
sideredx-efficient if the number of nodes expanded to find it
is x times more than the path length. The figure presents the
percentage ofx-efficient paths, and it is clear that utilizing
information about swamps increases the efficiency of search
for both hard and easy paths.

The increase in efficiency when using swamps on larger
grid sizes and a higher obstacle density can be explained
by the fact that our pre-processing algorithm manages to lo-
cate more swamp-regions in the grid. Figure 8 shows the
expected amount of squares that are categorized as swamp

7Only pairs of points that were connected were used in the ex-
periments. The reason for choosing only nodes that have a path
between them is that when A* searches between two nodes,s and
t, that do not have any path between them, it will expand all the
nodes in the connected component ofs. This is an unfair advantage
for our algorithm that uses swamps, as the connected component
of s in the pruned graph that is received after removing swamps
is significantly smaller than the connected component in the full
graph. Therefore, A* that uses swamps will in these cases have an
obvious advantage. Counting such pairs would only improve the
performance of our algorithm when compared to A*.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x−efficiency

P
er

ce
nt

ag
e

 

 

No swamps
Swamps

Figure 7: Percent ofx-efficient paths with and without
swamps—expected value

nodes vs. the number of blocked nodes and free (non-
swamp) nodes in the graph with different grid sizes and ob-
stacle percentages. With a higher percentage of obstacles,
the number of swamp nodes greatly exceeds the number of
free nodes, and the search runs on a much smaller graph.

The increase in savings on larger grids can be explained
by the fact that in larger grids the paths tends to be longer,
and may therefore pass near a greater number of swamp-
regions. Also, each single swamp-region contributes to the
efficiency of many paths.

Finally, Figure 9 presents a graph that shows the bene-
fits of reversing the search direction if the search starts out-
side of a swamp and proceeds into it. The number of ex-
panded nodes is decreased when searching into a swamp-
region when compared to the reversed search.

10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

100

120

140

Grid Sizes
 

 

expanded nodes, into swamps
expanded nodes, out of swamps
path sizes

Figure 9: The effects of reversing search that starts outside
a swamp-region (20% obstacle density)

Discussion and Future Work
In this paper, we introduced swamps—groups of nodes in a
graph that can hinder the search process. We formally de-
fined swamp-sets and swamp-regions, and presented an al-
gorithm for using swamp-sets to reduce search cost while
still detecting optimal paths. We then presented an anytime



10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

100

120

140

Grid sizes
 

 

expanded nodes, no swamps
expanded nodes with swamps
path sizes

(a) 20 percent obstacles

10 15 20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

Grid sizes
 

 

expanded nodes, no swamps
expanded nodes with swamps
path sizes

(b) 30 percent obstacles

10 15 20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

Grid sizes
 

 

expanded nodes, no swamps
expanded nodes with swamps
path sizes

(c) 40 percent obstacles

Figure 6: Percentage of savings using swamps with differentgrid sizes and obstacle percentages

10 15 20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

Grid size

N
um

be
r 

of
 n

od
es

 

 

Swamps
Free
Blocked

(a) 20 percent obstacles

10 15 20 25 30 35 40 45 50 55 60
0

200

400

600

800

1000

1200

1400

Grid size

N
um

be
r 

of
 n

od
es

 

 

Swamps
Free
Blocked

(b) 30 percent obstacles

10 15 20 25 30 35 40 45 50 55 60
0

200

400

600

800

1000

1200

1400

1600

1800

Grid size

N
um

be
r 

of
 n

od
es

 

 

Swamps
Free
Blocked

(c) 40 percent obstacles

Figure 8: Number of free, blocked, and swamp nodes with different grid sizes and obstacle percentages

algorithm that detects swamps in two-dimensional four-
neighbor grids (although our algorithm is easily adaptable
to any non-hidden graph). We formally proved that using
this algorithm returns a swamp-set that satisfies the proper-
ties needed for the exploitation algorithm to work correctly.
We then demonstrated with experiments on random grids
that the above algorithm greatly reduces search cost, i.e.,the
number of nodes expanded during the search. Our algorithm
requires very little memory—only a few bits per node on the
graph in order to assign that node to some swamp-region.

It still remains to test our approach on different types of
graphs with various search algorithms. We also believe that
the detection of swamp-sets can be greatly improved using
other methods to grow swamps. Since our approach can be
combined with other algorithms and heuristics to improve
search, it would be interesting to attempt to boost other ef-
ficient search methods with it. We also believe that it may
be of value to use other, more complex sets of swamps that
perhaps utilize information about different swamp-sets that
cannot be directly unified using our current approach.

References

Botea, A.; M̈uller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding.Journal of Game Development
1(1):7–28.

Hart, P.; Nilsson, N.; and Raphael, B. July 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transac-
tions on4(2):100–107.

Koenig, S., and Likhachev, M. 2002. D* lite. InAAAI’02,
476–483.

Koenig, S., and Likhachev, M. 2006. Real-time adaptive
A*. In AAMAS’06, 281–288. New York, NY, USA: ACM.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning A*. Artif. Intell. 155(1-2):93–146.

Koenig, S. 2004. A comparison of fast search methods
for real-time situated agents. InAAMAS, 864–871. IEEE
Computer Society.

Korf, R. E. 1985. Depth-first iterative-deepening: an opti-
mal admissible tree search.Artif. Intell. 27(1):97–109.

Korf, R. E. 1990. Real-time heuristic search.Artif. Intell.
42(2-3):189–211.

Sturtevant, N. R., and Buro, M. 2005. Partial pathfind-
ing using map abstraction and refinement. InAAAI, 1392–
1397.

Sturtevant, N. R. 2007. Memory-efficient abstractions for
pathfinding. InAIIDE, 31–36.



Proof of Theorem 6
Theorem. Every swamp-regionR contains at least 1 seed.

Definition 5. We say that a shortest pathP between nodes
v1, v2 is Manhattan if its length is exactly the Manhattan
distance betweenv1 andv2.

Note that any Manhattan path can only consist of moves
in 2 perpendicular directions (e.g., up and to the right). If
it consists of more than two then it takes more steps than
the Manhattan distance between the nodes because it goes
in two opposite directions (somewhere along the path), and
both these opposite moves cancel out when considering the
change in coordinates along the path.

Lemma 8. In a 2D four-neighbor grid, if a Manhattan path
P passes through a connected componentR, and both steps
of entering and exiting the swamp-region are taken in the
same direction, thenR is not a swamp-region.

Proof of lemma.Let us arbitrarily name the direction of en-
trance and exit used by pathP as up, and assume w.l.o.g. that
the pathP only proceeds in steps that are either up or to the
right (otherwise it is not a Manhattan path). Figure 10 illus-
trates a path taken through the swamp-region.

Figure 10: A path cutting through the swamp-region that
exits and enters in the same direction

Let v1, v2 be the two endpoints ofP . BecauseP is Man-
hattan, it is a shortest path between its endpoints, both of
which are outsideR. It is therefore sufficient to show that
no other shortest path can connect these two points without
passing throughR. SinceR is a connected component, in
order to go fromv1 to v2, a path must go either clockwise
aroundR, or counter-clockwise. Any path that goes clock-
wise will have to start atv1 and visit a node on the graph
that is to the left ofv1. It therefore moves left at some point,
and must move to the right later (becausev2 is abovev1 and
to the right). Therefore a clockwise path is in fact longer. A
similar reasoning applies to a counter-clockwise path, that
must visit a point that is to the right ofv2 and then proceed
to the left towardsv2. Therefore the only optimal paths be-
tweenv1 andv2 must pass throughR.

Proof of theorem.Let R be some swamp-region, and let us
assume to the contrary, thatR does not contain any seeds.
Let v be some unblocked node insideR. Since there are
no seeds inR, it must be possible to proceed either left or
down from v (otherwise, both are blocked and we have a
seed). After taking 1 such step it must always be possible to
take another, and go on in this manner until eventually ex-
iting R. Without loss of generality, we assume that the last
step out ofR is a step down, into nodeu. Therefore, when
walking up fromu the regionR is entered. Letv1 be the

node furthest to the left that is unblocked and for which a
step up takes us intoR (there must exist at least one such
node—u). Fromv1 let us take a pathP1 that goes up when-
ever the node above is unblocked, and right when the node
above is blocked. SinceP1 is a Manhattan path, it cannot
end by exitingR in a step that goes up (otherwise, according
to Lemma 8,R is not a swamp-region). Therefore, the path
P1 ends in a right step that reaches some nodev2 outside
R. v2 therefore has a left entrance intoR. Now, letP2 be
a path that starts atv2 and proceeds left whenever possible,
otherwise it will proceed down. This path eventually leaves
the swamp (again, it exists becauseR has no seeds). It is
impossible that this path leaves the swamp-region in a left
step because then we would reach a contradiction according
to Lemma 8. There are now 4 possibilities (each of which
will lead us to a contradiction) as depicted in Figure 11.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 11: Various cases in the proof of Theorem 6

1. The pathP2 intersectsP1 and passes below it. This is
only possible ifP2 goes down and meetsP1 at some point,
which contradicts the way pathP1 was constructed—always
preferring to go up whenever possible.
2. The pathP2 is identical toP1. This implies that every
point aboveP1 is blocked (as it chooses to go up whenever
possible) and so is every point to its left (because of the way
P2 was constructed). This implies thatR has a seed.
3. The pathP2 exits at some coordinate to the left ofv1. This
is impossible becausev1 was selected to be the node furthest
to the left that has an entrance in an upward step.
4. The pathP2 exits above and to the right ofv1. In this
case,P2 is a Manhattan path and has no alternative outside
the regionR, which is therefore not a swamp-set. SinceR is
a connected component, any alternative toP2 must either go
clockwise aroundR or counter-clockwise. If it goes clock-
wise, it must pass above nodev2 and then proceed down
towards it. The path is therefore not optimal. If it proceeds
counter-clockwise, it must proceed belowv1 and then go up
again. In any case, this path is not optimal.P2, however, is
optimal, and we reach a contradiction.
We have therefore reached a contradiction in every case.


