Using Swamps to Improve Optimal Pathfinding

(Extended Abstract)

- - - *
Nir Pochter, Aviv Zohar and Jeffrey S. Rosenschein
School of Engineering and Computer Science
The Hebrew University of Jerusalem, Israel

{nirp, avivz, jefff@cs.huji.ac.il

ABSTRACT

We address the problem of quickly finding shortest paths awkn
graphs. We propose a method that relies on identifying atess
tend to be searched needlessly (areas weseamp}, and exploits
this knowledge to improve search. The method requiresivelat
little memory, and reduces search cost drastically, whilldiading
optimal paths. Our method is independent of the heurisgesl in
the search, and of the search algorithm. We present expa@ine
results that support our claims, and provide an anytimerlkgo
for the pre-processing stage that identifies swamps.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search-Graph and tree search strategies

General Terms
Algorithms, Experimentation

Keywords
Search, Pathfinding, Pruning

1. INTRODUCTION

Many real-time applications search for shortest paths owkn
graphs. Examples include strategy games where multipte trai
verse a large board, as well as robotics applications witdrets
are required to navigate, planning their path through samea-
ment, usually using some variant of A* [1] or IDA* [2].

We introduce a method that prunes the search graph by remov-

ing areas where search is usually wasted, thus loweringvialb
search cost. Our method guarantees that paths found areabpti
even after the pruning. We automatically identify areas wak c

swampsand efficiently store information about them in the graph.

Then, while searching for shortest paths between two nodée o
graph, we block the search as it tries to unnecessarily ¢émbse
regions. The pre-processing stage is done using an anytgoe a
rithm, in which we locate swamps in a grid; i.e., the algarithives

*Aviv Zohar is also affiliated with Microsoft Israel R&D cemte
Herzlia, Israel. All authors partially supported by Isr&sience
Foundation grant #898/05.

Cite as: Using Swamps to Improve Optimal Pathfinding (Short Papeir), N

Pochter, Aviv Zohar and Jeffrey S. Rosensch&mpc. of 8th Int. Conf.

on Autonomous Agents and Multiagent Systems (AAMAS ,2009) 7

Decker, Sichman, Sierra and Castelfranchi (eds.), May1302009, Bu-
dapest, Hungary, pp. XXX-XXX.

Copyright © 2009, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights resetve

better results the longer it runs. The detection procesdheanbe
run in the background, to improve the results of future dessdn

the graph. We empirically evaluated our method on 2D four and
eight neighbor grids with randomly-placed obstacles, wlsearch

is performed using the A* algorithm with an admissible, detent
heuristic. The results demonstrate the usefulness of qumoaph
and provide information regarding the efficiency of our noeth

1.1 Swamps

Intuitively, a swamp is an area in the graph such that anytesior
path that passes through it either starts or ends insideatbat or
has an alternative shortest path that does not pass thtolgde-
fine this notion more formally below (see Figure 1 for an exinp

DEFINITION 1. AswampS inan undirected grapliz = (V, E)
is a group of nodess C V such that any 2 nodes , v which are
not part ofS have a shortest path that does not pass throSgii
swamp-regiorR is a set of connected nodes that is a swamp.

S2|S3

Figure 1: An example of a swamp-region. Nodes filled in black
are obstacles. Node$s1, sz, s3, s4} form a swamp-region.

2. DETECTING, EXPLOITING SWAMPS

To detect swamp-regions we make use of the following lemma:

LEMMA 1. LetS be a set of nodes il. If for any two nodes
v1,v2 0N the external boundary & there exists a shortest path
betweenv,, v, that does not pass through, thensS is a swamp.

To detect a swamp-region, we select a connected group ositbde
and trim it to a swamp-region, by checking all shortest paits
tween pairs of nodes on its boundary. If a pair of nodes cditis
S being a swamp-region according to Lemma 1, we tdmand
repeat until we get a swamp-region.

It is trivially possible to define the entire graph as a sirighge
swamp. This, however, will not be beneficial when trying tplei

A slightly more restrictive alternative is to define a swanspaa
group of nodes that ireverused in any shortest path. That def-
inition has nicer properties in some sense, but yields fogmitly
smaller swamps and is thus less useful in practice.

x10°

the swamps for more efficient searches. The same goes for very (s s
small swamps, that contain just one node. In the first cage the 2.5M M
are no searches that start and end outside the swamp, and in th) 5000
second case the graph is barely pruned. We will try to iner¢las g
benefits we get from swamps by using a swamp that is completely

4000f

Nodes
o
Nodes

3000f

partitioned into different swamp-regions, any subset ofcWhis
still a swamp. For this purpose, we add the following defomiti o 1000
DEFINITION 2. Aswamp-collectio is a set of swamp-regions, T B T T R
any subset of which forms a swamp togetliet= {R1, ... Ri} (a) 40 percent obstacles — fo(ly) 60 percent obstacles — eight
neighbor grid neighbor grid

To detect a swamp-collection, we apply our detection afori
incrementally in the presence of swamp regions that haeaayr
been located. The resulting swamp-region can be safelydaitde Figure 2: Expanded nodes (swamps, no swamps) and path size,

the swamp-collection. 4/8-neighbor grid
To utilize the information about swamps during search weyapp

the following algorithm: s o
Alg. 1: When searching for a path between nodegandv,: %0
1. LetV be the set of vertices in the graph.
2. LetC = {R4,...,Ri} be the full swamp-collection that was
found in the graph.
3. LetR’ € C be the swamp-region that belongs to, o) if v,
does not belong to any swamp-region.
4. LetR” c C be the swamp_region thaE be'ongs tO, O(Z) |f Vo % 100 150 200 250 300 350 400 0 100 200 seoo 400 500

Grid size Grid siz
does not belong to any swamp-region. (a) 60 percent obstacles — eigh) 40 percent obstacles — four
5. Search only in the nodes év \ Ule Ri) UR' UR" neighbor grid neighbor grid

5

@

5]
S

o

[S
b
S

Time (miliseconds)
Time (miliseconds)

IS

LEMMA 2. Running Alg. 1 will always find the shortest path
between nodes; , v2. Figure 3: Time it took to execute searches with and without
swamps, 4/8 neighbors grids

3. EXPERIMENTAL RESULTS

We ran experiments on four and eight neighbor grids, whesk ea
node can be either blocked or free. Nodes were blocked abnand

with varyir_wg probabilities _in each test, using differ_entdgsizes. and 8-neighbor grids, shown in Figure 4, demonstrate tleastite
In each grid, nodes were independently blocked with equaiar pre-processing cost is returned after a few hundred sesreinel

bility.> We then ran our swamp detection algorithms, and various that this number decreases as the size of the grid increases.
searches, with and without the swamps, to measure perfeenan

We will present here two different types of measurementtithe o S
it takes to perform the search (machine dependent), andithber 20 1400

number of searches, on average, that it takes to make updor th
time it took to perform the swamp pre-processing. This datatf

2000|

of nodes expanded (machine independent). Our implementati £ 1o
was in Java; experiments measuring run-time performange we §
done on a Pentium 4, 2.4GHZ machine, with 500MB of RAM. We ¥

1200f

H
5
8
8

m
g8
8

8 1200

Number of searches

ran our swamp detection algorithm on each generated gritk;zan £ 1009 o0

1,000 searches between pairs of points. Each search wagedpe - a0

twice: once using regular A*, and once using the same impteme S | mc
tation of A* but also using the additional information on gwamp Grid size Grid size

that was detected in the pre-processing stage. (a) four neighbor grid (b) eight neighbor grid

Our experiments demonstrated that using swamps results in a
significant saving in search costs (Figure 2). The savingies
more pronounced in larger grid sizes, where A* expands many Figure 4: The average number of searches needed to make up
more nodes than are strictly needed for the path. The deokity for the time it cost to pre-process the graph
obstacles is also a factor in the efficiency of the method. h&s t
number of obstacles rises, so does our algorithm’s savings.

In addition to the number of expanded nodes, we also measured4_ REFERENCES
the time it took to detect swamps, and the time it took to eteecu
searches with and without swamps. Figure 3 displays the admp
son of search time for 4-neighbor and 8-neighbor grids. Theds
show that the saving in the number of nodes expanded tradsiat
a saving in search time. Another interesting measuremettieis

[1] P.Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost patBy.stems
Science and Cybernetics, IEEE Transactions on
4(2):100-107, July 1968.

[2] R. E. Korf. Depth-first iterative-deepening: an optimal

2Since 8-neighbor graphs are much more connected, as they con admissible tree searchrtif. Intell., 27(1):97-109, 1985.

tain more edges, we used higher obstacle densities for the 8-
neighbor grids—otherwise, a search in these graphs is ®o ea

