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Abstract: Under many protocols—in computerized settings and in economics settings—participants
repeatedly “best respond” to each others’ actions until the system “converges” to an equilibrium point.
We ask when does such myopic “local rationality” imply “global rationality”, i.e., when is it best for
a player, given that the others are repeatedly best-responding, to also repeatedly best-respond? We
exhibit a class of games where this is indeed the case. We identify several environments of interest
that fall within our class: models of the Border Gateway Protocol (BGP) [7], that handles routing on
the Internet, and of the Transmission Control Protocol (TCP) [5], and also stable-roommates [3] and
cost-sharing [9, 10], that have been extensively studied in economic theory.
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1 Introduction
1.1 Motivation: When is it Best to Best-

Respond?
The basic object of study in game theory and

in economics is the equilibrium: a “stable” state
from which none of the players wish to deviate.
Equilibrium is a static concept that often abstracts
away the question of how it is reached. Once we
start looking at dynamics, or at algorithms for find-
ing equilibria, we cannot escape questions of the
form “How is an equilibrium reached?”. While
there can be different formalizations of this ques-
tion, in most cases, a truly satisfactory answer
would have each player performing only simple
“locally rational” actions and yet, mysteriously,
the system would reach a global equilibrium. The
simplest example of such phenomena is repeated
best-response dynamics: each player selects the
best (locally optimal) response to what others are
currently doing, and this process goes on “for a
while” until it “converges” to what must be a (pure
Nash) equilibrium. Convergence of repeated best-
response is, unfortunately, not guaranteed in gen-
eral, and is the subject of much research, as is
the convergence of more sophisticated “locally-

rational” dynamics, e.g., fictitious play or regret
minimization.

Our focus in this paper is on a different ques-
tion that has received little attention so far: “Is
such locally rational behavior really rational?”.
Specifically, we consider games in which repeated
best-response dynamics do converge to an equilib-
rium and study the incentive properties of this pro-
cess: Is it rational for players to repeatedly best-
respond? Can a long-sighted player improve, in
the long run, over this repeated myopic optimiza-
tion?

These questions about incentives are best ex-
plored in the context of games with incomplete
information. Switching our attention from games
with complete information to games with uncou-
pled incomplete information, we see that repeated
best-response exhibits another attractive trait: to
best-respond each player need only know his own
utility function (“type”), as his best response does
not depend on other players’ utility functions, but
only on their actions. Thus, we can view best-
response dynamics as a natural protocol for grad-
ual and limited sharing of information in an effort
to reach an equilibrium. Indeed, in many real-
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life contexts the interaction between decision mak-
ers with incomplete information takes the form of
best-response dynamics (e.g., Internet routing [7]).
When regarding best-response dynamics from this
perspective, it is an indirect mechanism in the
private-information mechanism-design sense. We
wish to understand when such a mechanism, that
dictates that all players repeatedly best-respond, is
incentive compatible.

1.2 The Setting

Let us begin by laying out our setting for study-
ing and formalizing incentives for repeated best-
response. In our framework, each player holds
a private utility function, and all players’ utility
functions, when put together, determine a full-
information base game with some commonly-
known strategy spaces. We desire that the out-
come of the dynamics be an equilibrium of this
base game.

Base game: We are given an n-player (one-shot)
base game G, with players 1, . . . , n, in which each
player i has strategy space Si, and S = S1 × ...×
Sn. Each player i has a utility function ui such
that (u1, . . . , un) ∈ U ⊆ U1 × · · · × Un, where
Ui ⊆ ℜ|S| is player i’s utility space. Each player
knows only his own utility function, i.e., we view
ui itself as player i’s type.

Best-response mechanisms: We study a class
of indirect mechanisms, that we term “repeated-
response mechanisms”: players take turns select-
ing strategies; at each (discrete) time step t, some
player it selects and announces strategy sti ∈
Sit . Observe that one course of action avail-
able to each player in a repeated-response mech-
anism is to always choose a best-response to the
most recently announced strategies of the oth-
ers, that is, repeated-best-response. We call a
repeated-response mechanism in which the pre-
scribed behavior for each player is to repeatedly
best-respond a “best-response mechanism”. To
fully-specify a best-response mechanism we must
specify (1) the starting state; (2) the order of player
activations (which player is “active” when); and
(3) for each player, a rule for breaking ties among
multiple best responses. All of our results hold re-
gardless of the initial state and of the order of play-
ers’ activations (so long as it is “long enough”),

and, in fact, even in more general settings.1 We
discuss tie-breaking rules below.

Goal: Our general aim is to identify interesting
classes of (base) games for which best-response
mechanisms are incentive-compatible. Intu-
itively, a best-response mechanism is incentive-
compatible if, when all other players are repeat-
edly best-responding, then a player is incentivized
to do the same. Defining incentive compatibility
in our setting involves many intricacies. We opt
to focus here on a very general notion of incentive
compatibility that, we believe, captures essentially
any variant that the reader may desire; in a com-
panion paper [11], we present several more games
(auctions) where only strictly weaker notions of
incentive compatibility can be obtained. Our no-
tion of incentive compatibility here captures the
two following distinct but complementary points
of view: a mechanism design perspective and a
learning equilibrium [1, 2] perspective.

Mechanism design perspective (in a prior-free
non-Bayesian setting): This point of view is nat-
ural when analyzing finite-time protocols in com-
puterized and economic settings. We are given a
game with incomplete information G, where each
player’s utility function is private, and we wish
to implement a pure Nash equilibrium (PNE) of
G. We point out that this uncommon objective—
implementing an equilibrium—proves to be a nat-
ural implementation goal in many contexts (see
Section 3, where we show that desirable outcomes
can be regarded as “stable states”). Best-response
mechanisms are incentive compatible, from this
perspective, if the desired outcomes are imple-
mented in the ex-post Nash sense2. Importantly,
from this point of view, no actual play happens
during the process of best-response dynamics and
players merely announce strategies as their com-
munication with the mechanism; each player only
cares about maximizing his benefit from the final
outcome of the mechanism, that is expected to ter-

1Our results actually hold even for (1) asynchronous player
activation orders in which multiple players can best-respond
simultaneously or based on outdated information (as studied
in [12]); (2) adaptive player activation orders that can change
based on the history of play; and also when (3) the mechanism
terminates as soon as all players “pass”, that is, each player
repeats his last strategy.

2The Revelation Principle then implies that the direct reve-
lation mechanism is truthful (in the ex-post-nash sense).
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minate after some finite predetermined number of
time steps.

Learning equilibrium perspective: This point of
view is natural when analyzing environments such
as Internet protocols and global financial transac-
tions, where players repeatedly interact with each
other and there is no “final turn”. Now, the players
are actually involved in infinite repeated play of the
incomplete-information game G and each player
has a rule for selecting his next strategy based on
the history of play. We are interested in the nat-
ural rule that dictates that a player simply always
best-respond to others’ most-recent strategies. In
this context, each player wishes to maximize his
long-term payoff, that we model to be the lim sup
of his stage utilities in this infinitely-played game3.
Best-response mechanisms are incentive compati-
ble, from this perspective, if the “best-response”
rules are themselves in equilibrium in this infinite
game regardless of the realization of (u1, . . . , un).
Using the terminology of [1, 2], this means that
best-response dynamics are in “learning equilib-
rium”. We stress that this would not follow from
the folk theorem since our players do not, in any
way, punish other players for deviation. To the
contrary, our incentive compatibility results estab-
lish that the natural best-response dynamics are in
equilibrium without requiring players to be able to
detect and penalize other players’ deviations.

Tie-breaking rules. When multiple best-
responses exist we must specify, for each player,
a tie-breaking rule. Importantly, this tie-breaking
rule must be “uncoupled”, i.e., depend solely on
the player’s private information (utility function)
and not on information that is unavailable to him4.
Our tie-breaking rules always have the following
simple form: fix, for each player i, an a-priori
full order ≺i on Si (that can depend on ui), and
instruct player i to break ties between multiple
best-responses according to ≺i. While this might
seem innocent enough, we do get significant mi-
lage from delicate choices of these tie-breaking

3In all our results, at equilibrium the lim sup is actually
the limit, and thus choosing lim sup gives us the strongest
and most robust results – the definition is in fact adversarial
to our proofs, it potentially allows manipulators to gain utility
by avoiding convergence.

4We note that it is also permissible for the tie-breaking rules
to depend on the players’ actions, though for our purposes this
was not needed.

rules, to the point that one may desire an intuitive
justification for these choices. Roughly speaking,
there are two main, conflicting, intuitions: in some
cases we simply ask players to break ties so as to
be “nice” to others; in other cases we break ties ac-
cording to some “iterated-trembling-hand” logic.

1.3 Games with Incentive-Compatible Best-
Response Mechanisms

Our main results are identifying a class of games
for which best-response mechanisms are incen-
tive compatible, and exhibiting several interesting
games that fall within this class (and thus have
incentive-compatible best-response mechanisms).
While at first glance, it might seem that the ex-
istence of a unique PNE to which best-response
dynamics are guaranteed to converge implies the
incentive-compatibility of best-response mecha-
nisms, this intuition is false.

C D
A 2,1 0,0
B 3,0 1,2

Figure 1: A game for which best-response mechanisms
are not incentive compatible.

Observe that in this game, (B,D) is the unique
PNE and every sequence of best responses con-
verges to it. Yet, consider the scenario that the
starting point is the strategy profile (A,C), and the
column player repeatedly best-responds. Clearly,
the row player’s local improvement from (A,C)
to (B,C) will lead to the column player moving
to (B,D). Hence, the row player can do bet-
ter by looking ahead, not moving from (A,C),
and thus “getting stuck” at (A,C), that he strictly
prefers to the unique pure Nash (B,D). Hence, re-
peated best-responding is not incentive compatible
in this game which is strictly-dominance-solvable,
is a potential game, and has a unique and Pareto-
optimal PNE.

What traits must a game have for best-response
dynamics to be incentive compatible? We
now present an intuitive exposition of a class
of games for which this is achieved, which
we term “Never-Best-Response-Solvable (NBR-
solvable) games with clear outcomes”. In an NBR-
solvable game, strategies are iteratively eliminated
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if a best-response never leads to them (this is
slightly different from dominance-solvability and
shall be defined in the following section). Intu-
itively, an NBR-solvable game has a clear outcome
if when each player i considers the game after
the other players have already eliminated strategies
that can be eliminated regardless of what i does, he
can already tell that he will not be able to do bet-
ter than the outcome that is reached via repeated
best-response.

Our main, and quite easy to prove, general the-
orem is the following. (We now state the theo-
rem for the case that the strategy spaces are finite,
though our result also holds for infinite strategy
spaces.)

Theorem (informal): Let G be an NBR-solvable
game with a clear outcome. Then, for every start-
ing point and every (finite or infinite) order of
player activations with at least T = Σi|Si| − n
“rounds” (a round is a sequence of consecutive
time steps in which each player is “active” at least
once) it holds that:

1. Repeated best-response dynamics converges
to a pure Nash equilibrium s∗ of G.

2. Repeated best-response dynamics is incentive
compatible.

We prove that each of the four environments be-
low can be formulated as a game that falls within
our class of games, and that the desired outcome in
each environment translates to a PNE in this for-
mulation. Thus, the above result implies the exis-
tence of incentive-compatible best-response mech-
anisms that implement the desired outcome in all
the contexts below.
• Stable-roommates. In this classic setting [3],

students must be paired for the purpose of
sharing dorm rooms, and each student has a
private full order over possible roommates.
The objective is to find a “stable matching”
where no two students prefer each other to
their assigned roommates. We show that a
natural mechanism, in which a student repeat-
edly proposes to his most preferred roommate
among those that would not immediately re-
ject him, and immediately rejects all pro-
posers except for his most preferred proposer,
is incentive compatible in well-studied envi-
ronments (interns-hospitals, correlated mar-
kets).

• Cost-sharing. Cost-sharing arises in situa-
tions in which the cost of some public service
(e.g., building a bridge) must be distributed
between self-interested users that can bene-
fit from this service to different extents. We
present a distributed mechanism that achieves
this goal in an incentive-compatible manner.
Our mechanism implements the outcome of
the famous Moulin mechanism [9, 10] (this
result can be extended to the more general
class of “acyclic mechanisms” [8]).

• Internet routing. The Border Gateway Pro-
tocol (BGP) establishes routes between the
smaller networks that make up the Internet.
We abstract the results in [7] and prove that
BGP is incentive compatible in realistic envi-
ronments.

• Congestion control. The Transmission Con-
trol Protocol (TCP) handles congestion on the
Internet. Building upon [5], that models key
aspects of TCP, we consider behavior that is
somewhat similar to TCP: increase your at-
tempted transmission rate until encountering
congestion, and then decrease the transmis-
sion rate. We show that such behavior is in
equilibrium.

Our results above establish incentive compati-
bility of best-response mechanisms. We also con-
sider the stronger “collusion-proofness” desidera-
tum, that even a coalition of players not be able
to deviate from repeated best-response and all
strictly gain from doing so. We prove that in some
of the above environments best-response mecha-
nisms even achieve this stronger requirement.

1.4 Research Agenda
We view this work as a first step towards a more

general research agenda. While convergence to
equilibrium of “locally-rational” dynamics, e.g.,
repeated best-response, fictitious play and regret
minimization, has been extensively studied, little
attention has been given to the question of when
such locally-rational dynamics are also “globally
rational”. Here, we tackle this question in the con-
text of repeated best-response and the implemen-
tation of PNE. However, we believe that the ex-
amination of other dynamics (e.g., fictitious play,
regret minimization) and other kinds of equilibria
(e.g., mixed Nash equilibrium, correlated equilib-
rium) is an interesting direction for future research.
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Positive and negative results along these lines can
help shed new light on the incentive structure of
existing protocols/mechanisms (see our results for
BGP and TCP and the results in [5, 7]), and pro-
vide new insights into the design of new proto-
cols/mechanisms.

Our results for repeated best-response dynam-
ics establish sufficient conditions for repeated best-
response to be incentive compatible. We still
lack characterizations of conditions that imply in-
centive compatibility both for general games and
for specific classes of games (dominance-solvable
games, potential games, etc.). We have thus far
considered a very strong notion of incentive com-
patibility. We believe that considering more re-
strictive notions (e.g., incentive compatibility in
expectation) is of interest. Indeed, in a compan-
ion paper [11] we present several such results for
commerce environments.

1.5 Organization
In the next section we formalize our model

and present our general theorem. In section 3
we present our results for the four specific en-
vironments listed above. We discuss collusion-
proofness in Section 4.

2 Incentive-Compatible
Best-Response Dynamics

Definition 2.1 (tie-breaking rules) A tie-
breaking rule (or tie-breaking order) for player i
is a full order ≺i on Si.

When faced with a choice between multiple
best-responses, player i should choose the high-
est (under ≺i) best-response. We now present the
following definitions for full-information games.

Definition 2.2 (never-best-response strategies)
si ∈ Si is a never-best-response (NBR) under
tie-breaking order ≺i on Si if for all s−i, there
exists s′i so that ui(si, s−i) < ui(s

′
i, s−i) OR both

ui(si, s−i) = ui(s
′
i, s−i) and si ≺i s

′
i.

Definition 2.3 (NBR-solvable games) A game G
is never-best-response-solvable (NBR-solvable)
under tie-breaking rules ≺1, . . . ,≺n if there exists
a sequence of eliminations of NBR strategies (un-
der these tie breaking rules) that results in a single
strategy profile.

Observe that every weakly-dominance-solvable
game has a tie-breaking order under which it
is NBR-solvable and every strongly-dominance-
solvable game is NBR-solvable for all tie-breaking
orders. Observe also that in every game that
is NBR-solvable under tie-breaking rules ≺1

, . . . ,≺n the elimination of NBR strategies (un-
der these tie-breaking rules) has a unique order-
independent outcome, that is a pure Nash equi-
librium of the game. We call this outcome “the
unique PNE under tie-breaking”.

Definition 2.4 (shortest-elimination parameters)
Let G be an NBR-solvable game (under tie-
breaking). Then, there exists a sequence of games
G0, . . . , Gr such that G = G0, in Gr each player
has only a single strategy, and ∀i ∈ {0, . . . , r−1},
Gi+1 is obtained from Gi via the removal of sets
of NBR strategies (under tie-breaking). The
shortest-elimination parameter eG for G is the
length of the shortest such sequence of games for
G.

Observe that if, in an NBR-solvable game G,
each strategy space Si is finite, then eG ≤ Σi|Si|−
n. NBR solvability on its own is insufficient to
guarantee incentive compatibility, and so we fur-
ther restrict it.

Definition 2.5 (globally-optimal profiles) s ∈ S
is globally optimal for i if ∀t ∈ S, ui(t) ≤ ui(s).

Definition 2.6 (clear outcomes) Let G be an
NBR-solvable game under tie breaking rules ≺1

, . . . ,≺n. Let s∗ be the unique PNE under tie-
breaking of G. We say that G has a clear outcome
if for every player i there exists a (player-specific)
order of elimination of NBR strategies (under the
given tie-breaking rules) such that s∗ is globally
optimal for i at the first step in the elimination se-
quence in which a strategy in Si is eliminated (that
is, in the game obtained after the removal of all
previously-eliminated strategies from G).

We say that an incomplete-information game G
is NBR-solvable with a clear outcome (under tie-
breaking rules) if every realization of (u1, . . . , un)
induces a full-information game that is NBR-
solvable with a clear outcome (under tie-breaking,
when each player i uses the tie-breaking rule <i

for the realized ui).
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Consider a best-response mechanism M for a
base game G. Let st ∈ S be the players’ strate-
gies at time step t. We call ui(s

t) player i’s stage
utility at time t. If M terminates after some finite
number of time steps T > 0 we say that player i’s
total utility is Γi = ui(s

T ) (his stage utility at the
last time step of M ’s execution). If M does not
terminate after finite time then i’s total utility is
Γi = lim supt→∞ ui(s

t). M is incentive compat-
ible if repeated best-response is a pure Nash equi-
librium in this repeated game with overall utilities
Γ1, . . . ,Γn for every realization of (u1, . . . , un).
We say that M is collusion-proof if no coalition
can deviate from repeated best-response and all
strictly gain from doing so in this repeated game.
We show that best-response mechanisms are in-
centive compatible for NBR-solvable games with
clear outcomes.

Theorem 2.7 (incentive-compatible mechanisms)
Let G be NBR-solvable with a clear outcome
s∗ ∈ S under tie-breaking rules ≺1, . . . ,≺n .
Let M be a best-response mechanism for G that
breaks ties as in ≺1, . . . ,≺n. Then, for every
starting point and every (finite or infinite) order of
player activations with at least T = eG “rounds”,
where a round is a sequence of consecutive time
steps in which each player is “active” at least
once,

1. M converges to s∗.
2. M is incentive compatible.
This holds even for (1) asynchronous player ac-

tivations orders in which multiple players can best-
respond simultaneously or based on outdated in-
formation (as studied in [12]); (2) adaptive player
activations orders that can change based on the
history of play; and also when (3) the mechanism
terminates as soon as all players “pass”, that is,
each player repeats his last strategy.

Proof sketch: Let G be an NBR-solvable game
with a clear outcome (under tie-breaking). Then,
there exists a sequence of games G0, . . . , Gr with
length r = eG, such that G = G0, in Gr

each player has only a single strategy, and ∀i ∈
{0, . . . , r − 1}, Gi+1 is obtained from Gi via
the removal of sets of NBR strategies (under tie-
breaking).

Convergence: We first show that if all players re-
peatedly best-respond then convergence to a PNE

is guaranteed within eG rounds. Consider the first
round of a best-response mechanism, and consider
some j ∈ [n] such that there exists sj ∈ Sj that is
NBR in G = G0. Observe that once j is activated
for the first time, sj will never be selected there-
after. Thus, after the first round, no NBR strategy
in G0 will be played ever again and hence the game
is effectively equivalent to G1. We can now use the
same argument to show that after the second round
the game is effectively equivalent to G2. Thus, we
mimic the elimination sequence in each strategy
until we end up at Gr, whose unique strategy tuple
s∗ is the unique PNE under tie-breaking of G.

Incentive compatibility: this property follows
from the fact that when each player i considers the
game after the other players have already elimi-
nated dominated strategies that can be eliminated
regardless of what i does, he can already tell that
he will not be able to do better than the outcome
that is reached via repeated best-response.

We give the precise argument (by contradic-
tion). Let i be a player that deviates from re-
peated best-response and strictly gains from doing
so. The fact that G is NBR-solvable with a clear
outcome (under tie-breaking) implies that there ex-
ists a (player-specific) order of elimination of NBR
strategies (under the given tie-breaking rules) such
that s∗ is globally optimal for i at the first step in
the elimination sequence in which a strategy in Si

is eliminated (that is, in the game obtained after
the removal of all previously-eliminated strategies
from G). Consider this order of elimination; it in-
duces some sequence of games G0, . . . , Gl such
that G = G0, in Gl each player has only a single
strategy, and ∀i ∈ {0, . . . , l−1}, Gi+1 is obtained
from Gi via the removal of sets of NBR strategies
(under tie-breaking) as in the (i+1)’th step in that
order. Now, let ti be the index of the first game in
the sequence in which i’s strategies are eliminated
in that order. All players but i are repeatedly best-
responding and in the ti−1 first steps of the elimi-
nation sequence no strategy in Si is eliminated. We
can use the same arguments that we used to show
convergence, to show that after ti − 1 rounds the
game is effectively equivalent to Gti , regardless of
the actions of player i. However, in that game, i
can do no better than s∗—a contradiction. �
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3 Four Best-Response Mechanisms
We present four examples of environments

that can be formulated as games that are NBR-
solvable with clear outcomes (sometimes un-
der tie-breaking): stable-roommates games, cost-
sharing games, BGP games and TCP games. This
implies the existence of incentive-compatible best-
response mechanisms for all these environments.

3.1 Stable-Roommates
This following classic setting has been exten-

sively studied in economics, game theory and com-
puter science. n students 1, . . . , n must be paired
for the purpose of sharing dorm rooms. Each stu-
dent has a private strict ranking of the others, and
prefers being matched to not being matched. The
goal is to find a stable matching, i.e., a match-
ing where no two students prefer each other to
their matched roommates. Unfortunately, a sta-
ble matching is not guaranteed to exist in general
and, furthermore, even if a stable matching does
exist (e.g., in bipartite graphs), existing algorithms
for reaching it are not incentive compatible [3].
We seek environments where a stable matching is
guaranteed to exist and can be reached in an in-
centive compatible manner. We focus on two well-
known special cases of stable roommates:
• Intern-hospital matchings: The “students”

are divided into two disjoint sets, called in-
terns and hospitals, and all hospitals have the
same ranking of interns (e.g., GPA-based).

• Correlated markets: The “students” are ver-
tices in a complete graph in which every edge
has a unique “weight”. The “heavier” the
edge connecting a student to another student
the higher that student ranks the other student.

We now show how the framework in Section 2
can be used to design natural incentive compatible
mechanisms for stable-roommates. We first for-
mulate this environment as a game and prove that
this game is NBR-solvable with a clear outcome.

Stable-roommates games: The students are the
players and each student i’s strategy space Si is the
set of all students j ̸= i. αi(j) denotes student j’s
rank in student i’s ranking (the least desired room-
mate’s rank is 1). ∀s = (s1, . . . , sn) ∈ S (that is,
choices of roommates), ui(s) = αi(j) iff si = j
and @k ̸= i such that sk = j and αj(k) > αj(i);

otherwise, ui(s) = 0.5 (Observe that players’ util-
ities are correlated.)

Theorem 3.1 For every stable-roommates game
G it holds that in both hospital-intern matchings
and correlated markets
• G is NBR-solvable.
• G’s unique PNE is a stable matchings.
• eG ≤ n.

Proof sketch: We say that a stable-roommates
game is cycle-free if there is no sequence of roo-
mates r1, r2, . . . rk of length k > 2 such that
each student ri ranks student ri+1 higher than stu-
dent ri−1 (where student indices are considered
mod k to induce a cycle).

Any matching game that is cycle-free has an
elimination sequence that can be constructed as
follows: At any stage in the elimination start with
some arbitrary student r1 (that has more than one
strategy in the current subgame) and construct a se-
quence r1, r2, . . . of students in which ri+1 is the
student ri prefers the most out of the students that
still have more than one possible strategy remain-
ing (other strategies were eliminated). The number
of students is finite and so the sequence must re-
peat. Since the game is cycle free, the cycle must
be of length 2. We have thus located 2 students
that desire each other the most. We can eliminate
for each of the two the strategies of proposing to
any other student since they are guaranteed to gain
the maximal utility by proposing to each other.

All that remains is to notice that both the
hospital-intern game and the correlated markets
game are cycle-free. In the case of hospitals and
interns, the hospitals agree about the ranking of in-
terns and so any cycle of players will have to in-
clude a hospital that is placed after a desired intern
and before a less desired one. In the case of corre-
lated markets, any cycle of nodes in the graph must
include an edge with a lower weight that appears
after an edge with a higher one and therefore the
preferences do not induce a cycle in the matching
graph in either case. �

We observe that the following simple and
computationally-efficient mechanism is a best-
response mechanism for stable-roommate games,

5We note that the more natural definition of utilities that
only awards utility to players that are selected by the partner
they themselves choose implies a game in which all matchings
are stable, and is thus not useful to us.
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and so Theorem 2.7 implies that it implements a
stable matching in an incentive-compatible man-
ner.

Mechanism for Stable-Roommates:
• Go over the students in some cyclic (round-

robin) order and, at each time step, allow a
single student to announce another student.

• We say that a student i makes a “better of-
fer” to another student j at time t if (1) i an-
nounces j at time t; and (2) j prefers i to all
students from whom he has “offers”, that is,
all students whose last announcement was j.
The mechanism prescribes that each student
repeatedly check which students he can make
a better offer to, and announce his most pre-
ferred student to whom he can make a better
offer.

• The mechanism terminates after n2 steps and
outputs all student pairs (i, j) such that i’s last
announcement was j and j’s last announce-
ment was i.

Theorem 3.2 The mechanism is incentive-
compatible in ex-post Nash and implements a
stable matching in both intern-hospital matchings
and correlated markets.

3.2 Cost-Sharing
Cost-sharing arises in situations in which the

cost of some public service (e.g., building a bridge)
must be distributed between self-interested users
that can benefit from this service to different ex-
tents, and is modeled as follows. n users 1, . . . , n
aim to share the cost of building some common in-
frastructure. Some cost-sharing rule specifies, for
every subset of users S, and every user i ∈ S,
i’s “cost share” ci(S) for building an infrastruc-
ture that only serves members of S. ci(S) is
nonnegative, monotonically non-increasing in S,
and also cross-monotonic, that is, ∀i ∈ S ⊆ T ,
ci(S) ≥ ci(T ). User i gets positive (private) value
vi ∈ ℜ≥0 if the infrastructure serves him and 0
otherwise. The goal is to split the cost of the in-
frastructure between a group of users so that each
user’s payment is at least his cost-share, yet does
not exceed his private value, that is, to find “rea-
sonable” cost shares. Moulin [9] exhibits a central-
ized mechanism that achieves this (see also [10]).

We now use the framework in Section 2 to
design simple and natural distributed incentive-

compatible mechanisms that implement the same
outcome as the Moulin mechanism. We present
“1st-price cost-sharing games” and specific tie-
breaking rules.

1st-price cost-sharing games: The users are
the players and, for each user i, Si = ℜ≥0.
Given a vector of users’ bids (strategies)

−→
b =

(b1, . . . , bn), the “serviced set” for
−→
b is the

maximum-cardinality subset of users S such that
∀j ∈ S, bj ≥ cj(S) (breaking ties between
such sets lexicographically). ∀

−→
b = (b1, . . . , bn),

ui(
−→
b ) = vi − bi if i is in the serviced set for

−→
b ;

ui(
−→
b ) = 0 otherwise.

Tie-breaking rules: Prefer bids closer to vi, i.e.,
∀s, t ∈ Si, if |s− vi| ≤ |t− vi| then t ≺i s.

Theorem 3.3 For every 1st-price cost-sharing
game G it holds that
• G is NBR-solvable under these tie-breaking

rules.
• G’s unique PNE under these tie-breaking

rules induces reasonable cost shares as in the
outcome of the Moulin mechanism.

• eG ≤ n.

Proof sketch: Let us show an elimination se-
quence for every cost sharing game. First, notice
that each player can only get a non-positive utility
from a bid that is above his valuation. We there-
fore start by eliminating these bids for all players.
Next, let Rv be the set of serviced users for bids
that are exactly the valuations of the players. Any
player i /∈ Rv will not get serviced for any set
of bids that are in the remaining subgame (costs
only increase as players drop out and he does not
win when they all pay the maximal amount). We
can therefore eliminate all strategies below vi for
any such player. For every player j ∈ Rv , we can
eliminate all bids below cj(R

v), as he will only
get 0 utility with those bids, and non-negative util-
ity with higher bids. Once these are eliminated,
then in the remaining subgame Rv will always be
the serviced set of players and we can eliminate all
bids above cj(R

v) as well.
Note that it is also possible to perform the elim-

inations using a different order. Specifically, for
each player i we can let all other players elimi-
nate bids above v, then determine a set of serviced
agents Ri for the case in which every agent j bids
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vj except for agent i that bids ∞. Then, eliminate
all bids for non-serviced agents (except their val-
uation), and check if ci(Ri) is greater than vi. If
it is, we can eliminate bids below ci(Ri) for agent
i. Otherwise, agent i will not gain a positive utility
from the service in any case and we can eliminate
all his strategies except his valuation. We can then
continue along the same lines as before and elimi-
nate strategies for all other players. Either way, the
elimination done by agent i leads to a subgame in
which s∗ is the optimal outcome for him, and so
the game has a clear outcome as required. �

We observe that the following natural dis-
tributed mechanism is a best-response mechanism
for 1st-price cost-sharing games (under these tie-
breaking rules), and so Theorem 2.7 implies that it
implements the outcome of the Moulin mechanism
in an incentive-compatible manner.

Mechanism for Cost-Sharing:
• Go over the users in some cyclic (round-

robin) order and, at each time step, allow a
single user to submit a bid in ℜ≥0.

• The mechanism prescribes that each bidder i
repeatedly bid as follows: submit the minimal
bid bi ≤ vi such that i is in the serviced set for
the most-recently submitted bids; in the event
that no such bid exists submit the bid bi = vi.

• The mechanism terminates after n2 time
steps, outputs the serviced set S for the last-
submitted bids and charges each bidder i ∈ S
his last bid bi.

Theorem 3.4 The mechanism is incentive com-
patible and implements reasonable cost-shares.

This result can be extended to the class of
acyclic mechanisms studied in [8]).

3.3 Internet Routing
The Border Gateway Protocol (BGP) estab-

lishes routes between the smaller networks that
make up the Internet. Griffin et al. [6] put forth
the following model for analyzing BGP dynamics.
The network is an undirected graph G = (V,E)
where the vertex set V consists of n source nodes
and 1, . . . , n a unique destination node d. Each
source node has a private strict ranking of all sim-
ple (loop-free) routes between itself and the desti-
nation node d. Under BGP, each source node re-
peatedly examines its neighboring nodes’ most re-

cent route-announcements, selects to forward traf-
fic through the neighbor whose route it likes the
most, and announces its newly chosen route to all
neighbors via update messages. The network is
asynchronous and so nodes can select routes si-
multaneously and based on outdated information
(update messages between nodes can be arbitrarily
delayed).

BGP’s convergence to a “stable” routing tree
is the subject of extensive networking research.
Levin et al. [7] observe that BGP can be regarded
as best-response dynamics in a specific class of
“routing games”, and prove that BGP is incentive-
compatible in networks for which the No Dispute
Wheel [6] condition holds.

Each pivot node ui would rather route clockwise
through pivot node ui+1 than through the direct
route Qi.

Figure 2: A Dispute Wheel

No Dispute Wheel is a generalization of the
Gao-Rexford [4] conditions, that capture com-
mon Internet routing practices. A Dispute Wheel
(see Figure 2) is a 3-tuple (U ,R,Q), where
U = (u0, u1, . . . , uk−1) is a sequence of k ver-
tices in V , called the “pivot nodes” and R =
(R0, R1, . . . , Rk−1), Q = (Q0, Q1, . . . , Qk−1)
are two sequences of k routes, such that (indices
are considered modulo k):
• ∀i, Qi is a simple route from i to d.
• ∀i, Ri is a simple route from ui to ui+1.
• ∀i, ui ranks the route RiQi+1 more highly

than the route Qi.
“No Dispute Wheel” is the condition that no

Dispute Wheel exist in the network.
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Theorem 3.5 [7] BGP is incentive-compatible in
ex-post Nash in networks for which No Dispute
Wheel holds.

We now show that the class of “BGP games”
presented in [7] falls within the category of NBR-
solvable games with clear outcomes. Thus, the
essence of the incentive compatibility result for
BGP in [7] follows from Theorem 2.7.

BGP games: The source nodes are the play-
ers and, for each source node i, Si is the set
of i’s outgoing edges in E. Given a vector of
source nodes’ traffic forwarding decisions (strate-
gies)

−→
f = (f1, . . . , fn), ui(

−→
f = (f1, . . . , fn)) is

i’s rank for the simple route from i to d under
−→
f

(the least desired route has rank 1) if such a route
exists; ui(

−→
f ) = 0 otherwise.

Theorem 3.6 For a BGP game G it holds that
• G is NBR-solvable.
• G’s unique PNE is a stable routing tree.
• eG ≤ n.

Proof sketch: Let us show an elimination or-
der in the game. At every stage in the elimina-
tion, we locate a node that can guarantee its most
preferred route (in the current subgame) and elim-
inate all other routing actions for it. To show that
such a node always exists, we begin with an arbi-
trary node a0 with at least 2 actions. Let R0 be
a0’s most preferred existing route to d (a route is
said to exist if all nodes along it can route accord-
ingly in the current subgame). Let a1 be the ver-
tex closest to d on R0, with two available actions
in the current subgame, such that a1 prefers some
other route R1 to the suffix of R0 that leads from
a1 to d (if no such node exists a0 can guarantee its
most preferred route). Then we choose a2 to be the
vertex closest to d on R1 such that a2’s most pre-
ferred route R2 is preferred over the suffix of R1

that leads from a2 to d. Once again if there is no
such a2 we are done. We can continue to choose
a3, a4, . . . in the same manner. Since there is a
finite number of vertices, at some point some ver-
tex will appear twice in this sequence (a0, a1, . . .).
This would result in the formation of a Dispute
Wheel (in which the ais are the pivot nodes and
the Ris are the routes) which we assumed is not
contained in the graph. We will therefore always
be able to find a node that can guarantee its most

preferred route and continue with the elimination,
until there are no more nodes with several possible
actions. �

3.4 Congestion Control
Congestion control is a crucial task in commu-

nication networks. Congestion is handled via the
combination of transmission-rate-adjustment pro-
tocols at the sender-receiver level (e.g., TCP), and
queueing management policies at the router level,
that dictate how excess traffic is discarded (e.g.,
RED). TCP is notoriously not incentive compati-
ble. [5] analyzes incentives in the following TCP-
inspired environment. The network is an undi-
rected graph G = (V,E) with a given a capacity
function c that specifies the capacity c(e) for each
edge e ∈ E. The network consists of n source-
target pairs of vertices (αi, βi). Every such source-
target pair (αi, βi) aims to send traffic along a fixed
route Ri in G. Each source αi can select trans-
mission rates that lie in the interval [0,Mi], where
Mi is αi’s private information, and wishes to max-
imize its achieved throughput. When an edge en-
counters congestion, that is, the sum of incoming
flows traversing it exceeds its capacity, excess traf-
fic must be discarded. [5] considers two capacity-
allocation schemes:
• Strict-Priority-Queueing (SPQ). ∀e ∈ E

there is an edge-specific order over source
nodes. Capacity is shared as follows: the
most highly ranked source whose route tra-
verses the edge gets its entire flow sent along
the edge (up to c(e)); unused capacity is allo-
cated to the second most highly ranked source
whose route traverses the edge in a similar
fashion, etc.

• Weighted-Fair-Queueing (WFQ). ∀e ∈ E,
each source node αi has weight wi(e) at e.
Every source αi is then allocated capacity
wi

Σjwj
c(e). Unused capacity is allocated in

a recursive manner. The special case that
∀e ∈ E, ∀i ∈ [n], wi(e) = 1 is called “fair
queueing” (FQ).

[5] considers a TCP-like protocol called
Probing-Increase-Educate-Decrease (PIED) in
which each source is instructed to gradually
increase its transmission rate until encounter-
ing congestion and, at that point, decrease its
transmission rate to its achieved throughput. [5]
analyzes PIED in settings in which all edges
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use SPQ or all edges use WFQ, and sources
priorities/weights are identical on all edges. PIED
is shown to be incentive compatible in both these
environments (also under asynchronous timings of
rate-transmission adjustments).

Theorem 3.7 [5] PIED is incentive compatible in
networks in which all edges use SPQ with coordi-
nated priorities.

Theorem 3.8 [5] PIED is incentive compatible
in networks in which all edges use WFQ with co-
ordinated weights (and so if all edges use FQ then
PIED is incentive compatible).

It is interesting to notice that PIED can be con-
sidered a form of better-response in a setting in
which the exact available capacity is unknown. We
unify the two results above for an abstracted set-
ting by formulating the environment in [5] as a
game and showing that this game is NBR-solvable
with a clear outcome (under specific tie-breaking
rules). Our main difference from [5] is that we al-
low players more knowledge about the network,
while [5] uses the probing nature of PIED to learn
the needed information (all that is needed is for
players to be able to tell the amount of available
bandwidth on their path). Thus, Theorem 2.7 im-
plies a result that is similar in spirit to the two the-
orems in [5].

TCP games: The source nodes are the players
and each source node i’s strategy space is Si =
[0,Mi]. Given a vector of source nodes’ transmis-
sion rates (strategies) −→r = (r1, . . . , rn), ui(

−→r )
is αi’s achieved throughput in the unique traffic-
flow equilibrium point of the network for −→r ([5]
shows that such a unique equilibrium point exists
for the SPQ and WFQ settings with coordinated
priorities/weights).

Tie-breaking rules: ∀s, t ∈ Si, s ≺i t iff s > t.

Theorem 3.9 For every TCP game G such that all
edges use SPQ with coordinated priorities, or all
edges use WFQ with coordinated weights, it holds
that
• G is NBR-solvable under these tie-breaking

rules.
• G’s unique PNE under these tie-breaking is a

stable flow pattern.
• eG ≤ n.

For clarity of presentation we show only the
proof for the case of Weighted-Fair-Queueing,
with equal weights. The proof for non-equal
weights and for Strict-Priority-Queueing follow
similar lines.
Proof sketch: Let us define for each edge e, the
share of each flow as βe = ce/ke where ke is the
number of flows that traverse the edge. We con-
struct an elimination sequence for the game as fol-
lows: Let e∗ be the edge with the minimal β. Each
flow on this edge is guaranteed βe∗ traffic through
that edge, and at least that amount on all other
edges. It is therefore possible to eliminate all ac-
tions of transmitting less than βe∗ for each player
that goes through e∗. Now, if all flows through e∗

claim their fair share, no flow can send more (no
bandwidth is unclaimed). We can therefore elimi-
nate all actions of transmitting above βe∗ for these
flows. Now, we are left with a subgame with a
smaller number of active players where some of
the bandwidth on each edge is already used up. We
can now repeat the elimination steps for the resid-
ual network graph with the remaining players.

Notice that for each bottleneck edge e∗ that is
found along the process there are several orders
of elimination (according to ordering among play-
ers). If player i eliminates actions below βe∗ last
among players that go through e∗, then he does so
in a game in which the final profile is optimal for
him, and so the game has a clear outcome. �

4 Collusion-Proof Best-Response
Mechanisms

In Section 3, we establish incentive compatibil-
ity results for four environments. We are able to
strengthen our results for stable-roommates (The-
orem 3.1), BGP games (Theorem 3.6), and TCP
games where all edges use SPQ with coordinated
priorities (see Theorem 3.9). We prove that, in all
these settings, best-response mechanisms are actu-
ally also collusion-proof. We observe, though, that
NBR-solvability with a clear outcome does not im-
ply collusion-proofness of best-response mecha-
nisms in general. To see this, consider the game
depicted in Figure 3 (which is simply the pris-
oner’s dilemma).

Observe that this game is indeed an NBR-
solvable game with a clear outcome, yet both
players prefer (C,C) to the unique equilibrium
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C D
C 2,2 0,3
D 3,0 1,1

Figure 3: An NBR-solvable game with a clear outcome
for which best-response mechanisms are not collusion
proof.

(D,D). Thus, the two players can jointly deviate
from repeated best-response and both strictly gain
from doing so.
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